188 research outputs found

    Effects of Increased Inclusion of Algae Meal on Lamb Total Tract Digestibility

    Get PDF
    Algae meal is a novel coproduct created by the unique combination of soybean hulls and oil-extracted heterotrophic micro algae. Algae meal is highly digestible by ruminants and was readily consumed by lambs when included at up to 60% of the diet dry matter. This suggests that algae meal could potentially replace corn or soybean hulls and serve as a valuable component of feedlot diets

    Comparison of Untreated Mature Switchgrass and Cornstalks as Roughage in Beef Cattle Feedlot Diets

    Get PDF
    A feeding trial using 121 crossbred steers was conducted to evaluate the utilization of untreated mature switchgrass as a roughage source in feedlot diets. Steers were fed either cornstalks (STALK) or switchgrass (SWITCH) as roughage at 14.2% of diet DM. Performance and carcass characteristics were evaluated relative to roughage source. Cattle fed SWITCH had lesser marbling scores but backfat, HCW, KPH, ribeye area, and yield grade did not differ between treatments. Cattle fed SWITCH had lesser DMI than did STALK cattle but carcass-adjusted ADG and G:F did not differ between treatments. Untreated switchgrass may replace cornstalks at low inclusions in finishing diets, and digestibility of this low quality roughage may be improved through alkaline treatment

    Relationships among intramammary health, udder and teat characteristics, and productivity of extensively managed ewes

    Get PDF
    Mastitis is an economically important disease and its subclinical state is difficult to diagnose, which makes mitigation more challenging. The objectives of this study were to screen clinically healthy ewes in order to 1) identify cultivable microbial species in milk, 2) evaluate somatic cell count (SCC) thresholds associated with intramammary infection, and 3) estimate relationships between udder and teat morphometric traits, SCC, and ewe productivity. Milk was collected from two flocks in early (\u3c5 \u3ed) and peak (30 to 45 d) lactation to quantify SCC (n = 530) and numerate cultivable microbial species by culture-based isolation followed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS; n = 243) identification. Within flock and lactation stage, 11% to 74% (mean = 36%) of samples were culture positive. More than 50 unique identifications were classified by MALDI-TOF MS analysis, and Bacillus licheniformis (18% to 27%), Micrococcus flavus (25%), Bacillus amyloliquefaciens (7% to 18%), and Staphylococcus epidermidis (26%) were among the most common within flock and across lactation stage. Optimum SCC thresholds to identify culture-positive samples ranged from 175 × 103 to 1,675 × 103 cells/mL. Ewe productivity was assessed as total 120-d adjusted litter weight (LW120) and analyzed within flock with breed, parity, year, and the linear covariate of log10 SCC (LSCC) at early or peak lactation. Although dependent on lactation stage and year, each 1-unit increase in LSCC (e.g., an increase in SCC from 100 × 103 to 1,000 × 103 cells/mL) was predicted to decrease LW120 between 9.5 and 16.1 kg when significant. Udder and teat traits included udder circumference, teat length, teat placement, and degree of separation of the udder halves. Correlations between traits were generally low to moderate within and across lactation stage and most were not consistently predictive of ewe LSCC. Overall, the frequencies of bacteria-positive milk samples indicated that subclinical mastitis (SCM) is common in these flocks and can impact ewe productivity. Therefore, future research is warranted to investigate pathways and timing of microbial invasion, genomic regions associated with susceptibility, and husbandry to mitigate the impact of SCM in extensively managed ewes

    Mycotoxin Detection in Human Samples from Patients Exposed to Environmental Molds

    Get PDF
    The goal of this study was to determine if selected mycotoxins (trichothecenes, aflatoxins, and ochratoxins) could be extracted and identified in human tissue and body fluids from patients exposed to toxin producing molds in their environment. Human urine and methanol extracted tissues and sputum were examined. Trichothecenes were tested using competitive ELISA techniques. Aflatoxins B1, B2, G1, and G2, and ochratoxin A were tested by using immunoaffinity columns and fluorometry. Test sensitivity and specificity were determined. Levels of detection for the various mycotoxins varied from 0.2 ppb for trichothecenes, 1.0 ppb for aflatoxins, and 2.0 ppb for ochratoxins. Trichothecene levels varied in urine, sputum, and tissue biopsies (lung, liver, brain) from undetectable (<0.2 ppb) to levels up to 18 ppb. Aflatoxin levels from the same types of tissues varied from 1.0 to 5.0 ppb. Ochratoxins isolated in the same type of tissues varied from 2.0 ppb to > 10.0 ppb. Negative control patients had no detectable mycotoxins in their tissues or fluids. These data show that mycotoxins can be detected in body fluids and human tissue from patients exposed to mycotoxin producing molds in the environment, and demonstrate which human tissues or fluids are the most likely to yield positive results

    Subunit-selective proteasome activity profiling uncovers uncoupled proteasome subunit activities during bacterial infections

    Get PDF
    The proteasome is a nuclear‐cytoplasmic proteolytic complex involved in nearly all regulatory pathways in plant cells. The three different catalytic activities of the proteasome can have different functions, but tools to monitor and control these subunits selectively are not yet available in plant science. Here, we introduce subunit‐selective inhibitors and dual‐color fluorescent activity‐based probes for studying two of the three active catalytic subunits of the plant proteasome. We validate these tools in two model plants and use this to study the proteasome during plant–microbe interactions. Our data reveal that Nicotiana benthamiana incorporates two different paralogs of each catalytic subunit into active proteasomes. Interestingly, both β1 and β5 activities are significantly increased upon infection with pathogenic Pseudomonas syringae pv. tomato DC3000 lacking hopQ1‐1 [PtoDC3000(ΔhQ)] whilst the activity profile of the β1 subunit changes. Infection with wild‐type PtoDC3000 causes proteasome activities that range from strongly induced β1 and β5 activities to strongly suppressed β5 activities, revealing that β1 and β5 activities can be uncoupled during bacterial infection. These selective probes and inhibitors are now available to the plant science community, and can be widely and easily applied to study the activity and role of the different catalytic subunits of the proteasome in different plant species.Bio-organic Synthesi

    Is less more? Lessons from aptamer selection strategies

    Get PDF
    Aptamers have many inherent advantages originating from their in vitro selection and tailored chemical synthesis that makes them appealing alternatives of antibodies in bioaffinity assays. However, what ultimately matters, and that is the prerequisite to give way to all these advantages, is how well, and how selectively the aptamers bind to their targets. With the aptamer selection largely in the hand of life scientists, analytical chemists focused mostly on methodological development of aptamer-based assays using a fairly restricted number of aptamers to prove their concepts. However, ideally the development of an aptamer-based assay should start from the selection of aptamers to ensure their proper functionality in real samples. For instance information on the sample matrix can be implemented within counter-selection steps to discard aptamer candidates that show cross-reactivity to matrix components or critical interferents. In general, a larger consideration of the analytical use during selection and characterization of aptamers have been shown to increase the applicability of aptamers. Therefore, this review is a short, subjective view on trends in aptamer development highlighting factors to consider during their selection for a successful analytical application
    corecore