11 research outputs found

    A-type lamins are essential for TGF-beta1 induced PP2A to dephosphorylate transcription factors.

    Get PDF
    Diseases caused by mutations in lamins A and C (laminopathies) suggest a crucial role for A-type lamins in different cellular processes. Laminopathies mostly affect tissues of mesenchymal origin. As transforming growth factor-beta1 (TGF-beta1) signalling impinges on the retinoblastoma protein (pRB) and SMADs, we tested the hypothesis that lamins modulate cellular responses to TGF-beta1 signalling, via the regulation of these transcription factors in mesenchymal cells. Here, we report that A-type lamins are essential for the inhibition of fibroblast proliferation by TGF-beta1. TGF-beta1 dephosphorylated pRB through PP2A, both of which, we show, are associated with lamin A/C. In addition, lamin A/C modulates the effect of TGF-beta1 on collagen production, a marker of mesenchymal differentiation. Our findings implicate lamin A/C in control of gene activity downstream of TGF-beta1, via nuclear phosphatases such as PP2A. This biological function provides a novel explanation for the observed mesenchymal dysfunction in laminopathie

    When lamin A/C fails, the heart suffers

    Get PDF

    Improved pharmacodynamic (PD) assessment of low dose PARP inhibitor PD activity for radiotherapy and chemotherapy combination trials

    No full text
    Item does not contain fulltextBACKGROUND: PARP inhibitors are currently evaluated in combination with radiotherapy and/or chemotherapy. As sensitizers, PARP inhibitors are active at very low concentrations therefore requiring highly sensitive pharmacodynamic (PD) assays. Current clinical PD-assays partly fail to provide such sensitivities. The aim of our study was to enable sensitive PD evaluation of PARP inhibitors for clinical sensitizer development. MATERIAL AND METHODS: PBMCs of healthy individuals and of olaparib and radiotherapy treated lung cancer patients were collected for ELISA-based PD-assays. RESULTS: PAR-signal amplification by ex vivo irradiation enabled an extended quantification range for PARP inhibitory activities after ex vivo treatment with inhibitors. This "radiation-enhanced-PAR" (REP) assay provided accurate IC50 values thereby also revealing differences among healthy individuals. Implemented in clinical radiotherapy combination Phase I trials, the REP-assay showed sensitive detection of PARP inhibition in patients treated with olaparib and establishes strong PARP inhibitory activities at low daily doses. CONCLUSIONS: Combination trials of radiotherapy and novel targeted agent(s) often require different and more sensitive PD assessments than in the monotherapy setting. This study shows the benefit and relevance of sensitive and adapted PD-assays for such combination purposes and provides proof of clinically relevant cellular PARP inhibitory activities at low daily olaparib doses

    Developmental origins and lineage descendants of endogenous adult cardiac progenitor cells

    No full text
    corecore