541 research outputs found

    Phylogenetic relatedness as a tool in restoration ecology: a meta-analysis

    Get PDF
    7 pages, 1 figure, 2 tables, 52 references.Biotic interactions assembling plant communities can be positive (facilitation) or negative (competition) and operate simultaneously. Facilitative interactions and posterior competition are among the mechanisms triggering succession, thus representing a good scenario for ecological restoration. As distantly related species tend to have different phenotypes, and therefore different ecological requirements, they can coexist, maximizing facilitation and minimizing competition. We suggest including phylogenetic relatedness together with phenotypic information as a predictor for the net effects of the balance between facilitation and competition in nurse-based restoration experiments. We quantify, by means of a Bayesian meta-analysis of nurse-based restoration experiments performed worldwide, the importance of phylogenetic relatedness and life-form disparity in the survival, growth and density of facilitated plants. We find that the more similar the life forms of neighbouring plants are the greater the positive effect of phylogenetic distance is on survival and density. This result suggests that other characteristics beyond life form are also contained in the phylogeny, and the larger the phylogenetic distance, the less is the niche overlap, and therefore the less is the competition. As a general rule, we can maximize the success of the nurse-based practices by increasing life-form disparity and phylogenetic distances between the neighbour and the facilitated plant.This work was funded by AECID (Projects A017475/08, A023461/09), DGAPA-UNAM (Project IN-224808-3) and CYTED (AcciĂłn 409AC0369).Peer reviewe

    Tectono-stratigraphic basin evolution in the TehuacĂĄn-Mixteca highlands, south western MĂ©xico

    Get PDF
    The morphological evolution of the basins in the Sierra Madre del Sur (SMS), southern MĂ©xico is poorly understood. This work explains for the first time the geomorphological development of the tectonic, fluvially-interconnected SMS basins named San Juan Raya (SJRb) and ZapotitlĂĄn (ZAPb). The evolution of the SJRb and ZAPb are analysed within the context of the transformations of the well-studied TehuacĂĄn basin (TEHb). A new interpretation of a series of tectonic features of the TEHb valley area is also presented. Published geological data and extensive field work provided the basis for our geomorphological and evolutionary interpretation of basin evolution of this part of Mesoamerica during the late Cenozoic. Stratigraphic and sedimentary records suggest that after the late Cretaceous-early Cenozoic orogeny the TEHb and ZAPb were closed basins, and that the TEHb graben system was activated during the Paleogene as a response to the dominant regional NW-SE trending faults. We propose that the ZAPb and SJRb formed sequentially during the Neogene as a result of new E-W, N-S and NE-SW faults. The continuation of the TEHb extension during the Oligocene widened its lowland area and allowed the formation of an extensive lake. No alluvial or fluvial records of this interval are found in the ZAPb and SJRb. No sedimentation rather than formation and subsequent erosion of such sediments is supported by the basin morphology and by the absence of re-worked alluvial deposits at the outlet area where both connect to the TEHb. By middle to late Miocene the TEHb lost its endorheic configuration, ending the lake-type deposition while new faults initiated the opening of the ZAPb. Intensive tectonics, alluvial deposition and the confinement of the TehuacĂĄn lake to the north sector of this basin characterised the Pliocene. During the late Pliocene to the early Pleistocene the formation of the SJRb was initiated. Quaternary faulting related to basin extension along the north watershed of the SJRb and ZAPb is supported by independent data on the biogeography of the cactus Mammillaria pectinifera. We introduce the idea that the departure from the regional NW-SE fault alignment that formed the major Miocene basins to a more local E-W trend that formed Neogene-Quaternary basins was probably a response to the latest post-orogenic relaxation of the crust in the Mixteca terrane

    The structure of plant spatial association networks is linked to plant diversity in global drylands

    Get PDF
    Despite commonly used to unveil the complex structure of interactions within ecological communities and their value to assess their resilience against external disturbances, network analyses have seldom been applied in plant communities. We evaluated how plant–plant spatial association networks vary in global drylands and assessed whether network structure was related to plant diversity in these ecosystems. We surveyed 185 dryland ecosystems from all continents except Antarctica and built networks using the local spatial association between all the perennial plants species present in the communities studied. Then, for each network, we calculated four descriptors of network structure (link density, link weight mean and heterogeneity, and structural balance) and evaluated their significance with null models. Finally, we used structural equation models to evaluate how abiotic factors (including geography, topography, climate and soil conditions) and network descriptors influenced plant species richness and evenness. Plant networks were highly variable world-wide, but at most study sites (72%) presented common structures such as a higher link density than expected. We also find evidence of the presence of high structural balance in the networks studied. Moreover, all network descriptors considered had a positive and significant effect on plant diversity and on species richness in particular. Synthesis. Our results constitute the first empirical evidence showing the existence of common network architectures structuring dryland plant communities at the global scale and suggest a relationship between the structure of spatial networks and plant diversity. They also highlight the importance of system-level approaches to explain the diversity and structure of interactions in plant communities, two major drivers of terrestrial ecosystem functioning

    Late Quaternary evolution of alluvial fans in the Playa, El Fresnal region, northern Chihuahua desert, Mexico: Palaeoclimatic implications

    Get PDF
    The Playa El Fresnal area is a tilted terrane characteristic of an extensional basin. It is a half graben/tilted-block system with a playa-lake on the basin floor flanked by piedmonts covered by alluvial fans. Structural heterogeneities within normal fault zones influenced the geomorphic expression of the uplifted footwall blocks of associated volcanism, and the downdropped hanging wall. The footwall area is the main sediment source, but the hanging wall-derived sediments are more extensive. The ancient alluvial fans are in the distal part, whereas the hanging-wall sediments are located in the apex area. A geomorphic analysis of the relative topographic position of the alluvial fans, degree of dissection of the original surfaces, general sedimentology (facies description), and stream channel network type, highlights the importance of climatic change in interpreting alluvial-fan surfaces. Three generations of alluvial fans were identified on the footwall and hanging wall slopes. They were formed during the late Quaternary climatic shift, consistent with the main climatic changes recorded in the paleolake stratig-raphy of northern Mexico and the American Southwest. These alluvial fans consist mainly of debris-flow deposits from flash floods, probably triggered by a change from relatively moist to arid conditions. They contrast with the typically lower-flow-regime of thick-bedded, cross-bedded, and lenticular channel facies, and associated floodplain sequences of rivers

    Late Quaternary evolution of alluvial fans in the Playa, El Fresnal region, northern Chihuahua desert, Mexico: Palaeoclimatic implications

    Get PDF
    The Playa El Fresnal area is a tilted terrane characteristic of an extensional basin. It is a half graben/tilted-block system with a playa-lake on the basin floor flanked by piedmonts covered by alluvial fans. Structural heterogeneities within normal fault zones influenced the geomorphic expression of the uplifted footwall blocks of associated volcanism, and the downdropped hanging wall. The footwall area is the main sediment source, but the hanging wall-derived sediments are more extensive. The ancient alluvial fans are in the distal part, whereas the hanging-wall sediments are located in the apex area. A geomorphic analysis of the relative topographic position of the alluvial fans, degree of dissection of the original surfaces, general sedimentology (facies description), and stream channel network type, highlights the importance of climatic change in interpreting alluvial-fan surfaces. Three generations of alluvial fans were identified on the footwall and hanging wall slopes. They were formed during the late Quaternary climatic shift, consistent with the main climatic changes recorded in the paleolake stratig-raphy of northern Mexico and the American Southwest. These alluvial fans consist mainly of debris-flow deposits from flash floods, probably triggered by a change from relatively moist to arid conditions. They contrast with the typically lower-flow-regime of thick-bedded, cross-bedded, and lenticular channel facies, and associated floodplain sequences of rivers

    Association between Opuntia species invasion and changes in land-cover in the Mediterranean region

    Get PDF
    In Mediterranean regions, biological invasions pose a major threat to the conservation of native species and the integrity of ecosystems. In addition, changes in land-cover are a widespread phenomenon in Mediterranean regions, where an increase in urban areas and major changes from agricultural abandonment to shrub encroachment and afforestation are occurring. However, the link between biological invasions and changes in land-cover has scarcely been analyzed. We conducted a regional survey of the distribution of the two alien prickly-pear cacti Opuntia maxima and O. stricta in Cap de Creus (Catalonia, Spain) and related patterns of invasion to spatially explicit data on land-cover/change from 1973 to 1993 to test the hypotheses that the two Opuntia species invade areas that have experienced large land-cover transformations. We found that Opuntia invasion is particularly high in shrublands and woodlands located near urban areas. O. maxima are over-represented in the shrublands and O. stricta in the woodlands that were former crops. Crop coverage has dropped by 71% in this 20-year period. This study highlights the role of past land-cover in understanding the present distribution of plant invasions

    Regeneration niche differentiates functional strategies of desert woody plant species

    Get PDF
    Plant communities vary dramatically in the number and relative abundance of species that exhibit facilitative interactions, which contributes substantially to variation in community structure and dynamics. Predicting species’ responses to neighbors based on readily measurable functional traits would provide important insight into the factors that structure plant communities. We measured a suite of functional traits on seedlings of 20 species and mature plants of 54 species of shrubs from three arid biogeographic regions. We hypothesized that species with different regeneration niches—those that require nurse plants for establishment (beneficiaries) versus those that do not (colonizers)—are functionally different. Indeed, seedlings of beneficiary species had lower relative growth rates, larger seeds and final biomass, allocated biomass toward roots and height at a cost to leaf mass fraction, and constructed costly, dense leaf and root tissues relative to colonizers. Likewise at maturity, beneficiaries had larger overall size and denser leaves coupled with greater water use efficiency than colonizers. In contrast to current hypotheses that suggest beneficiaries are less “stress-tolerant” than colonizers, beneficiaries exhibited conservative functional strategies suited to persistently dry, low light conditions beneath canopies, whereas colonizers exhibited opportunistic strategies that may be advantageous in fluctuating, open microenvironments. In addition, the signature of the regeneration niche at maturity indicates that facilitation expands the range of functional diversity within plant communities at all ontogenetic stages. This study demonstrates the utility of specific functional traits for predicting species’ regeneration niches in hot deserts, and provides a framework for studying facilitation in other severe environments
    • 

    corecore