116 research outputs found

    Interview with Barry Valentine by Andrea L’Hommedieu

    Get PDF
    Biographical NoteBarry Lee Valentine was born September 12, 1943, in Emporia Kansas. He grew up in York Harbor, Maine, attended York High School, and received a degree in engineering from Rensselaer Polytechnic Institute. During college he took part in ROTC and after graduation joined the Air Force, serving as a pilot in Vietnam. He left the Air Force in 1972 and returned to Maine, where he helped run an airfield and became involved in politics because a neighbor ran for a seat in the Maine state legislature. He was the York county coordinator for the Maine public power campaign and then joined George Mitchell’s 1974 gubernatorial primary campaign, serving as a scheduler and driver. That fall he ran unsuccessfully for state Senate. He worked in Augusta, Maine, as a staffer for the state House majority leader. In 1976 he made a successful bid for a seat in the state legislature. In 1979 he became a district manager for the 1980 census. He worked in aviation, managing the Portland Jet Port, serving as the regional vice chairman of the National Association of State Aviation Officials, and as chairman of the Airports Committee. Then in 1992 he began work as a staffer for Senate Majority Leader Mitchell on the Senate Select Committee on POW/MIA Affairs. After the committee completed its work, Valentine became an administrator at the FAA during the Clinton administration. At the time of this interview he was semi-retired. SummaryInterview includes discussion of: family and educational background; Valentine’s love of flying; Air Force and Vietnam; working on Neil Rolde’s 1972 campaign; the Maine public power referendum; working for George Mitchell in the 1974 gubernatorial campaign; an anecdote about a mill worker who wanted to know what Mitchell would ‘do about them women’ who were getting jobs on the mill floor; Barry’s insights as scheduler/driver; Mitchell’s position on two Democratic planks – gay rights and amnesty for those who avoided the draft – and an anecdote explaining his position to four truckers at a Bangor truck stop; Barry’s running for state senate in 1974 and winning election to the state legislature in 1976; the 1980 census; Mitchell’s 1982 campaign; working on the Senate Select Committee on POW/MIA Affairs; the 1992 presidential election; and Mitchell’s commitment to his beliefs even when they were politically unpopular

    A mechanism for the inhibition of DNA-PK-mediated DNA sensing by a virus

    Get PDF
    The innate immune system is critical in the response to infection by pathogens and it is activated by pattern recognition receptors (PRRs) binding to pathogen associated molecular patterns (PAMPs). During viral infection, the direct recognition of the viral nucleic acids, such as the genomes of DNA viruses, is very important for activation of innate immunity. Recently, DNA-dependent protein kinase (DNA-PK), a heterotrimeric complex consisting of the Ku70/Ku80 heterodimer and the catalytic subunit DNA-PKcs was identified as a cytoplasmic PRR for DNA that is important for the innate immune response to intracellular DNA and DNA virus infection. Here we show that vaccinia virus (VACV) has evolved to inhibit this function of DNA-PK by expression of a highly conserved protein called C16, which was known to contribute to virulence but by an unknown mechanism. Data presented show that C16 binds directly to the Ku heterodimer and thereby inhibits the innate immune response to DNA in fibroblasts, characterised by the decreased production of cytokines and chemokines. Mechanistically, C16 acts by blocking DNA-PK binding to DNA, which correlates with reduced DNA-PK-dependent DNA sensing. The C-terminal region of C16 is sufficient for binding Ku and this activity is conserved in the variola virus (VARV) orthologue of C16. In contrast, deletion of 5 amino acids in this domain is enough to knockout this function from the attenuated vaccine strain modified vaccinia virus Ankara (MVA). In vivo a VACV mutant lacking C16 induced higher levels of cytokines and chemokines early after infection compared to control viruses, confirming the role of this virulence factor in attenuating the innate immune response. Overall this study describes the inhibition of DNA-PK-dependent DNA sensing by a poxvirus protein, adding to the evidence that DNA-PK is a critical component of innate immunity to DNA viruses

    Rapid and Efficient Clearance of Blood-borne Virus by Liver Sinusoidal Endothelium

    Get PDF
    The liver removes quickly the great bulk of virus circulating in blood, leaving only a small fraction to infect the host, in a manner characteristic of each virus. The scavenger cells of the liver sinusoids are implicated, but the mechanism is entirely unknown. Here we show, borrowing a mouse model of adenovirus clearance, that nearly all infused adenovirus is cleared by the liver sinusoidal endothelial cell (LSEC). Using refined immunofluorescence microscopy techniques for distinguishing macrophages and endothelial cells in fixed liver, and identifying virus by two distinct physicochemical methods, we localized adenovirus 1 minute after infusion mainly to the LSEC (∼90%), finding ∼10% with Kupffer cells (KC) and none with hepatocytes. Electron microscopy confirmed our results. In contrast with much prior work claiming the main scavenger to be the KC, our results locate the clearance mechanism to the LSEC and identify this cell as a key site of antiviral activity

    Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial

    Get PDF
    Background Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy

    Expression of the proapoptotic protein Bid is an adverse prognostic factor for radiotherapy outcome in carcinoma of the cervix

    Get PDF
    The Bcl-2 family of apoptotic regulators is thought to play an essential role in cancer development and influence the sensitivity of tumour cells to radiotherapy. Bid is an abundantly expressed Bcl-2 family protein playing a central role in various pathways of apoptosis by integrating and converging signals at the mitochondria. The relevance of apoptotic modulation by Bcl-2 and related proteins in tumour development and radiation response for human tumours remains undefined. Therefore, a study was made regarding the expression of Bid in patients with locally advanced cervix carcinoma who received radiotherapy. Bid expression was assessed using immunohistochemistry in pretreatment archival biopsies from 98 patients. The data were correlated with clinicopathologic characteristics and treatment outcome. Pretreatment tumour radiosensitivity data were available for 60 patients. Strong Bid expression was associated with a patient age less than the median of 52 years (P=0.034) and poor metastasis-free survival. In multivariate analysis, after allowing for stage, Bid expression was a significant prognostic factor for both disease-specific and metastasis-free survival (P=0.026). It is concluded that strong tumour Bid expression is associated with poor outcome following radiotherapy regardless of intrinsic tumour cell radiosensitivity, and is adverse prognostic for disease-specific and metastasis-free survival in younger patients

    Use of 16S rRNA Gene Based Clone Libraries to Assess Microbial Communities Potentially Involved in Anaerobic Methane Oxidation in a Mediterranean Cold Seep

    Get PDF
    This study provides data on the diversities of bacterial and archaeal communities in an active methane seep at the Kazan mud volcano in the deep Eastern Mediterranean sea. Layers of varying depths in the Kazan sediments were investigated in terms of (1) chemical parameters and (2) DNA-based microbial population structures. The latter was accomplished by analyzing the sequences of directly amplified 16S rRNA genes, resulting in the phylogenetic analysis of the prokaryotic communities. Sequences of organisms potentially associated with processes such as anaerobic methane oxidation and sulfate reduction were thus identified. Overall, the sediment layers revealed the presence of sequences of quite diverse bacterial and archaeal communities, which varied considerably with depth. Dominant types revealed in these communities are known as key organisms involved in the following processes: (1) anaerobic methane oxidation and sulfate reduction, (2) sulfide oxidation, and (3) a range of (aerobic) heterotrophic processes. In the communities in the lowest sediment layer sampled (22–34 cm), sulfate-reducing bacteria and archaea of the ANME-2 cluster (likely involved in anaerobic methane oxidation) were prevalent, whereas heterotrophic organisms abounded in the top sediment layer (0–6 cm). Communities in the middle layer (6–22 cm) contained organisms that could be linked to either of the aforementioned processes. We discuss how these phylogeny (sequence)-based findings can support the ongoing molecular work aimed at unraveling both the functioning and the functional diversities of the communities under study

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2–4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease
    corecore