859 research outputs found

    Validation of Energy Dispersive X-Ray Spectrometry as a Method to Standardize Backscattered Electron Images of Bone

    Get PDF
    The use of backscattered electron (BSE) imaging as a tool for the qualitative measurement of mineral content in bone has been well documented. The challenge still remains to develop BSE imaging as a tool for quantitative mineral content analysis in bone. The limiting factor has been the ability to standardize the BSE signal within and between laboratories. Energy dispersive x-ray spectrometry (EDX) has been proposed as a method to standardize the BSE operating environment. The goal of this study is to investigate the relationship between EDX-determined wt.% Ca measurements and BSE graylevels. A comparison with traditional ash content measurements will indicate the validity of the procedure. A comparative study was performed on a series of bones representing a broad range of mineralization. Results confirmed a high correlation between BSE graylevels and wt.% Ca measured with EDX. However, the BSE method consistently underestimated the mineral content of bone determined by traditional ash measurements. The results suggest that quantitative BSE imaging can be standardized by EDX measurements, but an empirically determined correction may be necessary if comparisons with known and accepted mineral content measurement techniques are to be performed. Further investigation into the nature of this empirical correction is warranted before the procedure can be universally applied to bone mineral content analysis

    Consistency in Calibrated Backscattered Electron Images of Calcified Tissues and Minerals Analyzed in Multiple Imaging Sessions

    Get PDF
    Pure metal standards have been used to calibrate the operating environment in quantitative backscattered electron (BSE) imaging of mineralized tissue, allowing comparisons to be made between various mineralization states of bone at the microscopic level. It has not previously been documented that calibration procedures produce consistent, reliable results over multiple imaging sessions. In this study, BSE images were obtained from bones, pure metals, and a naturally occurring mineral in multiple imaging sessions over a six day period. The graylevel histogram profile (GHP) from each specimen was analyzed for changes in the shape and relative placement on the graylevel spectrum. Computer controlled calibration and a retrospective calibration method using pure aluminum and pure magnesium-aluminum-zinc demonstrated consistency between imaging sessions. Calibrated weighted mean gray levels (WMGLs) for biological materials had an average standard deviation of 5.9 graylevels (2.4% variation) during the course of the study. WMGLs for inorganic materials had an average standard deviation of 0.9 graylevels (0.4% variation). A trend towards increased image brightness, due to specimen and/or embedding media degradation, was observed in the biological tissues. No increase in brightness was observed for the inorganic specimens. Kurtosis and skewness tests revealed a slight deviation from normality in all specimens, which remained consistent between multiple imaging sessions. These results demonstrate that BSE image analysis of bones and mineral can be calibrated with negligible precision error allowing comparisons between data within and between multiple imaging sessions

    Cross section measurement of the astrophysically important 17O(p,gamma)18F reaction in a wide energy range

    Get PDF
    The 17O(p,g)18F reaction plays an important role in hydrogen burning processes in different stages of stellar evolution. The rate of this reaction must therefore be known with high accuracy in order to provide the necessary input for astrophysical models. The cross section of 17O(p,g)18F is characterized by a complicated resonance structure at low energies. Experimental data, however, is scarce in a wide energy range which increases the uncertainty of the low energy extrapolations. The purpose of the present work is therefore to provide consistent and precise cross section values in a wide energy range. The cross section is measured using the activation method which provides directly the total cross section. With this technique some typical systematic uncertainties encountered in in-beam gamma-spectroscopy experiments can be avoided. The cross section was measured between 500 keV and 1.8 MeV proton energies with a total uncertainty of typically 10%. The results are compared with earlier measurements and it is found that the gross features of the 17O(p,g)18F excitation function is relatively well reproduced by the present data. Deviation of roughly a factor of 1.5 is found in the case of the total cross section when compared with the only one high energy dataset. At the lowest measured energy our result is in agreement with two recent datasets within one standard deviation and deviates by roughly two standard deviations from a third one. An R-matrix analysis of the present and previous data strengthen the reliability of the extrapolated zero energy astrophysical S-factor. Using an independent experimental technique, the literature cross section data of 17O(p,g)18F is confirmed in the energy region of the resonances while lower direct capture cross section is recommended at higher energies. The present dataset provides a constraint for the theoretical cross sections.Comment: Accepted for publication in Phys. Rev. C. Abstract shortened in order to comply with arxiv rule

    The 10Be contents of SNC meteorites

    Get PDF
    Several authors have explored the possibility that the Shergottites, Nakhlites, and Chassigny (SNC) came from Mars. The spallogenic gas contents of the SNC meteorites have been used to: constrain the sizes of the SNC's during the last few million years; to establish groupings independent of the geochemical ones; and to estimate the likelihood of certain entries in the catalog of all conceivable passages from Mars to Earth. The particular shielding dependence of Be-10 makes the isotope a good probe of the irradiation conditions experienced by the SNC meteorites. The Be-10 contents of nine members of the group were measured using the technique of accelerator mass spectrometry. The Be-10 contents of Nakhla, Governador Valadares, Chassigny, and probably Lafayette, about 20 dpm/kg, exceed the values expected from irradiation of the surface of a large body. The Be-10 data therfore do not support scenario III of Bogard et al., one in which most of the Be-10 in the SNC meteorites would have formed on the Martian surface; they resemble rather the Be-10 contents found in many ordinary chondrites subjected to 4 Pi exposures. The uncertainties of the Be-10 contents lead to appreciable errors in the Be-10 ages, t(1) = -1/lambda ln(1 Be-10/Be-10). Nonetheless, the Be-10 ages are consistent with the Ne-21 ages calculated assuming conventional, small-body production rates and short terrestrial ages for the finds. It is believed that this concordance strengthens the case for at least 3 different irradiation ages for the SNC meteorites. Given the similar half-thicknesses of the Be-10 and Ne-21 production rates, the ratios of the Be-10 and Ne-21 contents do not appear consistent with common ages for any of the groups. In view of the general agreement between the Be-10 and Ne-21 ages it does not seem useful at this time to construct multiple-stage irradiation histories for the SNC meteorites

    Encounter complexes and dimensionality reduction in protein-protein association

    Get PDF
    An outstanding challenge has been to understand the mechanism whereby proteins associate. We report here the results of exhaustively sampling the conformational space in protein–protein association using a physics-based energy function. The agreement between experimental intermolecular paramagnetic relaxation enhancement (PRE) data and the PRE profiles calculated from the docked structures shows that the method captures both specific and non-specific encounter complexes. To explore the energy landscape in the vicinity of the native structure, the nonlinear manifold describing the relative orientation of two solid bodies is projected onto a Euclidean space in which the shape of low energy regions is studied by principal component analysis. Results show that the energy surface is canyon-like, with a smooth funnel within a two dimensional subspace capturing over 75% of the total motion. Thus, proteins tend to associate along preferred pathways, similar to sliding of a protein along DNA in the process of protein-DNA recognition

    Beable trajectories for revealing quantum control mechanisms

    Get PDF
    The dynamics induced while controlling quantum systems by optimally shaped laser pulses have often been difficult to understand in detail. A method is presented for quantifying the importance of specific sequences of quantum transitions involved in the control process. The method is based on a ``beable'' formulation of quantum mechanics due to John Bell that rigorously maps the quantum evolution onto an ensemble of stochastic trajectories over a classical state space. Detailed mechanism identification is illustrated with a model 7-level system. A general procedure is presented to extract mechanism information directly from closed-loop control experiments. Application to simulated experimental data for the model system proves robust with up to 25% noise.Comment: Latex, 20 pages, 13 figure

    Altered cortical thickness following prenatal sodium valproate exposure

    Get PDF
    Prenatal exposure to sodium valproate (VPA) is associated with neurodevelopmental impairments. Cortical thickness was measured in 16 children exposed prenatally to VPA and 16 controls. We found increased left inferior frontal gyrus (IFG; BA45) and left pericalcarine sulcus (BA18) thickness, an association between VPA dose and right IFG thickness, and a close relationship between verbal skills and left IFG thickness. A significant interaction between group and hemispheric IFG thickness showed absence of the normal asymmetry in the IFG region of VPA-exposed children. These data provide preliminary insights into the putative neural basis of difficulties experienced by some VPA-exposed children

    Stochastic Self-Similar and Fractal Universe

    Full text link
    The structures formation of the Universe appears as if it were a classically self-similar random process at all astrophysical scales. An agreement is demonstrated for the present hypotheses of segregation with a size of astrophysical structures by using a comparison between quantum quantities and astrophysical ones. We present the observed segregated Universe as the result of a fundamental self-similar law, which generalizes the Compton wavelength relation. It appears that the Universe has a memory of its quantum origin as suggested by R.Penrose with respect to quasi-crystal. A more accurate analysis shows that the present theory can be extended from the astrophysical to the nuclear scale by using generalized (stochastically) self-similar random process. This transition is connected to the relevant presence of the electromagnetic and nuclear interactions inside the matter. In this sense, the presented rule is correct from a subatomic scale to an astrophysical one. We discuss the near full agreement at organic cell scale and human scale too. Consequently the Universe, with its structures at all scales (atomic nucleus, organic cell, human, planet, solar system, galaxy, clusters of galaxy, super clusters of galaxy), could have a fundamental quantum reason. In conclusion, we analyze the spatial dimensions of the objects in the Universe as well as spacetime dimensions. The result is that it seems we live in an El Naschie's E infinity Cantorian spacetime; so we must seriously start considering fractal geometry as the geometry of nature, a type of arena where the laws of physics appear at each scale in a self--similar way as advocated long ago by the Swedish school of astrophysics.Comment: 17 pages, 3 figures, accepted by Chaos, Solitons & Fractla

    Hydrogen Bond Dynamics Near A Micellar Surface: Origin of the Universal Slow Relaxation at Complex Aqueous Interfaces

    Full text link
    The dynamics of hydrogen bonds among water molecules themselves and with the polar head groups (PHG) at a micellar surface have been investigated by long molecular dynamics simulations. The lifetime of the hydrogen bond between a PHG and a water molecule is found to be much longer than that between any two water molecules, and is likely to be a general feature of hydrophilic surfaces of organized assemblies. Analyses of individual water trajectories suggest that water molecules can remain bound to the micellar surface for more than a hundred picosecond. The activation energy for such a transition from the bound to a free state for the water molecules is estimated to be about 3.5kcal/mole.Comment: 12 pages. Phys. Rev. Lett. (Accepted) (2002
    corecore