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Abstract 

Pure metal standards have been used to calibrate the 
operating environment in quantitative backscattered elec
tron (BSE) imaging of mineralized tissue, allowing com
parisons to be made between various mineralization 
states of bone at the microscopic level. It has not pre
vioosl y b0.en documented that calibration procedures pro
duce consistent, reliable results over multiple imaging 
ses,ions. In this study, BSE images were obtained from 
bones, pure metals, and a naturally occurring mineral in 
multiple imaging sessions over a six day period. The 
graylevel histogram profile (GHP) from each specimen 
was analyzed for changes in the shape and relative 
plai;ement on the graylevel spectrum. Computer control
led calibration and a retrospective calibration method 
using pure aluminum and pure magnesium-aluminum
zinc demonstrated consistency between imaging sessions . 
Calibrated weighted mean gray levels (WMGLs) for bio
logical materials had an average standard deviation of 
5.9 graylevels (2.4 % variation) during the course of the 
study. WMGLs for inorganic materials had an average 
standard deviation of 0.9 graylevels (0.4% variation). 
A trend towards increased image brightness, due to 
specimen and/or embedding media degradation, was ob
served in the biological tissues . No increase in 
brightness was observed for the inorganic specimens. 
Kurtosis and skewness tests revealed a slight deviation 
from normality in all specimens, which remained con
sistent between multiple imaging sessions. These results 
demonstrate that BSE image analysis of bones and min
eral can be calibrated with negligible precision error 
allowing comparisons between data within and between 
multiple imaging sessions. 

Key Words: Backscattered electron imaging; bone; 
mineral quantitation; graylevel calibration; calibration 
standard. 
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Introduction 

Boyde and Jones [9] introduced the use of the scan
ning electron microscope (SEM) in the backscatter mode 
as a tool for the qualitative study of microscopic miner
alization differences in bone and dental tissues. Reid 
and Boyde [30] later developed a technique using back
scattered electron (BSE) imaging for the quantitative 
analysis of bone mineral content. Boyce et al. [5] fur
ther advanced quantitative BSE image analysis by cali
brating the SEM operating environment using pure ele
ments as calibration standards, enabling the comparison 
of images captured at different times. The development 
of techniques to calibrate BSE images has allowed bone 
and mineral researchers to quantify relative differences 
in microscopic mineral density variations in mineralized 
tissue [2, 4, 11, 23, 34, 35, 39]. BSE imaging technol
ogy has also been used to study both mineral content 
variations and morphological parameters in cancellous 
bone [23, 36, 37]. 

Since BSEs interact within only a few micrometers 
of a typical bone specimen surface [24, 25], BSE images 
of bone have remarkably high resolution and contrast 
[1]. The graylevel intensity of a pixel in a digitized 
BSE image of bone is directly proportional to the back
scatter coefficient 1/, which is primarily a function of the 
mean atomic number of the sampled electron interaction 
volume [22, 34]. Experimental studies have shown that 
as a result of atomic number contrast, mean graylevel 
variations in BSE images of bone are strong ly correlated 
to mineral content (volume/volume, v/v; and weight/ 
weight; w/w) and density (glee) [34, 35]. 

In many of the above applications of BSE imaging 
of bone, practical limitations often necessitate imaging 
over extended periods of time in several operating ses
sions. Large scale studies involving numerous samples 
[4, 11, 23] can require several days or even weeks . 
Calibration procedures that use pure standards were de
signed to enable researchers to maintain consistency in 
the BSE/SEM operating environment within and between 
imaging sessions. However, a review of the literature 
showed that the study of Boyce et al. (5] is the only one 
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Figure 1. Graphic example of three adjacent fields cap
tured with the SEM in a bone specimen. The three 
fields were assigned by location into one of three groups 
(I, II, III). The same pattern of three fields was cap
tured from each of the seven specimens used in this 
study. 

that experimentally demonstrates that pure materials can 
be used to calibrate the BSE/SEM operating environment 
with minimal precision error. They demonstrated that 
the relative placement along the graylevel spectrum of 
the graylevel histogram profile (GHP) of pure magne
sium and aluminum standards could be maintained to 
within 0. 8 % error between 5 imaging sessions that were 
conducted at different times on the same day. Visual 
inspection showed that the shape of the profile remained 
consistent throughout the 5 imaging sessions. 

Although Hofmann et al. [23] used this method to 
calibrate imaging sessions on different days, and both 
Torontali et al. [39] and Grynpas et al. [21] used pure 
standards and a modified technique to calibrate different 
imaging sessions, these investigators did not report the 
precision errors of their methods. Boyde et al. [7] con
secutively re-imaged the same bone fields to calibrate 
images obtained during the same operating session, but 
did not report precision error. Documentation of preci
sion error is an important step in validating the utility of 
any calibration technique, however, accomplishing this 
is not a straight-forward task in atomic-number-contrast 
BSE imaging. Error in these calibration methods can be 
the result of both brightness and contrast variations that 
are associated with surface contamination, filament fa
tigue, beam current changes, and other variables [2, 5]. 
Consequently, calibration of BSE images based on gray
levels must include documentation that both brightness 
and contrast remain consistent [5]. This can be accom
plished by verifying that both the size and shape, and 
relative placement of the GHPs of the calibration stand
ards and experimental specimens remain consistent. It 
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is not clear if these calibration procedures can maintain, 
with acceptable error, the consistency of the BSE/SEM 
operating environment between multiple imaging 
sessions on multiple days. 

The objective of the present study is to use a modi
fication of the calibration procedure of Boyce et al . [5] 
to test the following hypotheses: (1) sequential calibra
tions can be performed on pure metal standards with ac
ceptable error in the size, shape, and relative placement 
of the GHP along the graylevel spectrum, between mul
tiple imaging sessions on multiple days, and (2) accepta
ble consistency in the size, shape, and relative placement 
along the graylevel spectrum of mineral and bone tissue 
GHPs can be maintained in multiple calibrated imaging 
sessions on multiple days. 

Materials and Methods 

Specimen preparation 

Both biological and inorganic specimens were ob
tained for this study. Biological specimens included: (1) 
bone from the femoral mid-diaphysis of a 17-day-old 
embryonic white leghorn chick; (2) cortical bone from 
the mid-femoral diaphysis of a previously healthy male 
human donor, 45 years of age; (3) cortical bone from 
the cranial ("compression") cortex at the proximal end 
of the calcaneus of a skeletally mature Rocky Mountain 
mule deer (Odocoileus hemionus hemionus); and (4) cor
tical bone from a mature antler of male Rocky Mountain 
mule deer. These mineralized tissues were selected be
cause details of their remodeling rates [16, 27 (pages 
214-217), 35, 36, 37] are known and they represent a 
broad range of mineralization [12]. Each bone specimen 
was manually cleaned of periosteum, where applicable, 
and other associated soft tissues. Marrow removal from 
porous spaces in the bone was facilitated with a high 
pressure stream of tap water (Water-Pik®, Teledyne 
Water Pik, Fort Collins, CO). The specimens were de
fatted by soaking for 20 days in a large volume of re
agent-grade chloroform (Omnisolv, EM Industries, Inc., 
Gibbstown, NJ) under vacuum with constant stirring 
[15]. Residual chloroform was removed by placing the 
specimens in an 80°C oven for 3 days. The defatted tis
sues were then embedded in polymethyl methacrylate 
(PMMA) [13, 33] using conventional methods. After 
polymerization, the embedded tissues were cut into 
cubes with a band saw and glued together with a cyano
acrylate glue. 

The inorganic materials included: ' ( 1) 99. 8 % pure 
magnesium-aluminum-zinc wire (93 % Mg, 6 % Al, 
1 % Zn) and 99.9999% pure aluminum wire (Johnson 
Matthey, Inc., Seabrook, NH), and (2) a naturally 
occurring feldspar (nominally: KA1Si30 8) crystal frag
ment (courtesy of F. DeCourten, University of Utah, 
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Figure 2. Time-line of captured images. The group numbers (I = Group 1; II = Group 2; and III = Group 3) refer 
to the image capture pattern for each specimen (see text and Fig. 1). 

Department of Geology). For brevity, magnesium-alu
minum-zinc will be referred to as magnesium. Cyano
acrylate glue was used to attach the inorganic materials 
directly to the block of embedded bone specimens. 

The composite specimen block containing both the 
biological and inorganic materials was glued with an 
epoxy resin into a groove that had been previously 
milled in a Plexiglas® block. Following the protocol of 
Bloebaum et al. [2], the composite specimen block was 
milled, ground, and then buffed to achieve an optical 
finish. The block was lightly sputter coated with gold at 
70 µ,m Hg and 10 mA for 75 seconds (Hummer Model 
VI-A Sputtering System, Anatech, Alexandria, VA). 

Back scattered electrons (BSE) image capture 

The composite specimen block was placed on the 
stage of a JEOL 6100 SEM (JEOL USA, Inc., Peabody, 
MA), with the polished surface perpendicular to the in
cident electron beam. Operating conditions of the SEM 
included an accelerating voltage of 30 kV, probe current 
of 0.750 nA, and working distance of 15 mm. BSEs 
were collected using a four quadrant, annular ring semi
conductor BSE detector (Tetra, Oxford Instruments, 
Cambridge, UK). BSE images were captured onto mag
netic media by a computer-controlled image capture and 
analysis system (eXL, Oxford Instruments) which al
lowed for image analysis at a later time. Image analysis 
was performed with a public domain computer software 
program (Image 1.55; copy available from Wayne Ras
band, National Institutes of Health, Bethesda, MD, 
20892; E-mail address: wayne@helix.nih.gov). 

Three adjacent, non-overlapping 200X fields were 
imaged from each of the biological and inorganic speci
mens (Figure 1), for a total of 21 images. This approxi-
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mately corresponds to a 450 µ,m x 450 µ,m square region 
analyzed in each image capture. Each field captured 
was assigned by location into one of three groups (I, II, 
or III) as depicted in Figure 1. The stage positions were 
recorded to allow the same field to be analyzed during 
different imaging sessions. The mechanized stage 
allowed for stage control accurate to ±0.001 mm. Im
ages were captured using nine slow scans and a Kalman 
frame averaging technique (eXL, Oxford Instruments) to 
increase the signal to noise ratio . Scanning time for 
each image capture was approximately 8 seconds. SEM 
settings, including brightness, contrast, objective lens 
strength, and condenser lens strength were computer 
controlled to maintain consistent BSE/SEM operating 
conditions. 

Prior to each image capture, operating conditions 
stored in computer memory were restored to their origi
nal settings. Computer-controlled settings included: 
brightness, contrast, stage position, condenser lens 
strength, objective lens strength, and spot size. Addi
tionally, an external probe current detector (model 485 
autoranging picoammeter, Keithley Instruments, Inc., 
Cleveland, OH) was monitored to ensure that the probe 
current ( corresponding to the number of incident elec
trons) remained consistent to within ± 0.001 nA. Prior 
to every image captured, probe current was measured 
and any deviation in probe current was manually cor
rected by fine adjustments in the condenser lens 
strength. The probe current has been observed to re
main consistent, with only minor fluctuations, for at 
least twenty minutes [5]. This is well within the scan
ning time required for any individual image to be cap
tured. This allowed for rapid on-line calibration of the 
BSE/SEM environment. 
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Figure 1 illustrates the locations of selected images 
and Figure 2 shows a timeline that clarifies the image 
capture sequence. Immediately following image cap
tures in the first session on day 1, the SEM settings 
were re-adjusted to the extreme excursions of the instru
ment and then restored to the original settings that had 
been saved in computer memory. The Group I field was 
then re-imaged for each specimen (Figure 1). Next, the 
SEM controls were adjusted to the extreme excursions 
of the instrument, the filament current was slowly 
reduced to zero, and the SEM was turned off for two 
hours. Using the saved operating conditions, the SEM 
was restored to its original operating environment and 
the Group I field from each specimen was re-imaged for 
the third time on day 1. The SEM was then turned off 
and the composite specimen block was removed from 
the stage. 

Two days later (Day 3) the specimen was placed on 
the stage and positioned using marks previously scribed 
on the specimen block. The SEM was again restored to 
its original operating conditions and the fields from 
Group I and Group II were re-imaged for each speci
men. The SEM was turned off and an additional two 
days later (Day 5, or 4 full days after the first imaging 
session), the fields from Group I were re-imaged for 
each specimen using the saved operating conditions. On 
the final (6th) day of the experiment, the fields from all 
three groups were re-imaged for each specimen. 

Backscattered electrons (BSE) image analysis 

Pilot work showed that the aluminum and magnesi
um wires were too small to allow for the capture of 
three non-overlapping fields. Several of the captured 
images, therefore, included the interface between the 
metals and the PMMA . A noticeable decrease in pixel 
brightness of the metal near the interface was observed. 
The change in pixel intensity is likely the result of the 
altered electron interaction volume at the metal/PMMA 
[17 (pages 84-85, 92-93)] interface or possible 
topographical effects [25] due to the discontinuous nature 
of the interface. The metal/ PMMA interface was 
avoided by selecting analysis regions that were small 
enough to exclude the metal/ PMMA boundary on all 
captured images which included the interface. 
Additionally, on day seven, a large surface defect 
appeared on the feldspar specimen in region IL The 
cause of the defect was unknown and the area of the 
analysis region was modified to eliminate the con
taminated area. For the remainder of the specimens, the 
analysis region consisted of the entire captured image. 

The method of Bloebaum et al. [2] is used to calcu
late the weighted mean graylevel (WMGL) of each cap
tured image. To reduce the time required to accomplish 
one analysis, this method, as originally described, sqrts 
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Figure 3. (a) BSE photomicrograph of feldspar and (b) 
the GHP generated from this image. The multiphasic 
nature of the feldspar is clearly seen in the photomicro
graph and is seen in the GHP as a bimodal distribution. 

--------------- ----------------------

the pixel graylevel data into 51 graylevel bins. The 
advanced analysis system used in the present study 
allowed all 256 bins to be used in the WMGL 
calculation: 

255 

WMGL = E{(AjGLYA1} (1) 
i=6 

where: ~ = area of ith graylevel, GI, = ith graylevel, 
and Ai = total area imaged. WMGLs serve as indica
tions of the relative placement of the gray level histogram 
along the graylevel spectrum. GHPs were obtained 
from the graylevel frequency distribution of the image. 
Since alterations in the size and shape of the GHP are 
strongly influenced by image contrast [5], the GHP of 
each BSE image was analyzed for skewness and kurtosis 
[38] . Statistical analysis was performed with a com
mercially available computer software program (Number 
Cruncher Statistical System 5.02, Kaysville, UT). Each 
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Table 1. Calculated WMGLs for each specimen prior to retrospective calibration . WMGLs between groups (I,Il,III) 
appear consistent. WMGLs are consistent between imaging sessions. 

Weighted Mean Graylevel (WMGL) 

Dav 1-lmage 1 Day 1-lmage 2 

Chick I 58 .5 64 .7 
Chick II 57 .7 
Chick Ill 55 .2 

Human I 104 .4 107 .3 
Human II 104 .5 
Human Ill 100 .5 

Antler I 58 .0 63.4 

Antler II 59 .4 

Antler Ill 59 . 1 

Mule Deer I 111 . 9 119. 3 

Mule Deer II 113. 3 
Mule Deer Ill 113 .8 

Aluminum I 184 .7 185.3 

Aluminum II 190 .8 
Aluminum Ill 186.2 

Magnesium I 148 .3 14 7 .2 
Magnesium II 152.8 
Magnesium Ill 150.8 

Feldspar I 151 .9 154.0 
Feldspar II 153 .8 
Feldspar Ill 154.2 

GHP was also visually examined for evidence of gross 
deviations from a unimodal , continuous distribution. 
Figure 3 displays the relationship between a BSE photo
micrograph (Fig. 3a) and its associated GHP (Fig. 3b). 

In previously published work, pure metal standards 
have been used as calibration standards [5, 21, 23, 34, 
39] to compensate for fluctuations in the operating envi
ronment . The technique used by Boyce et al. [5] 
required a tedious process of superimposing the GHPs 
of magnesium and aluminum by adjusting the relative 
brightness and contrast settings during the image cap
ture. In the present study, the WMGL from the magne
sium and aluminum standards in region 1 were retro
spectively used to normalize WMGL differences of the 
other materials in addition to calibration using the com
puter controls described above. The WMGL for the 
magnesium specimen from region I was arbitrarily de
fined as 150 for each imaging session. The WMGL for 
the aluminum specimen from region I was arbitrarily de
fined as 180 for each imaging session. The calibrated 
WMGL for the remaining specimens, and for the alumi
num and magnesium from regions 2 and 3, was calcu
lated using the following equation, so as to preserve the 
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Day 1-lmage 3 Dav 3 Day 5 Day 7 

64.8 59 .8 61.0 73.0 
58.1 61.0 

58.3 

108 .5 104.6 103.7 109.0 
104. 7 108.1 

101. 7 

64.0 61.0 58.8 64.6 
61 .7 64.9 

64.8 

119 .7 115.3 115 .5 117 .1 

115.3 116 .5 
117 .2 

186 .5 182 .0 179.4 184.6 
186 .5 188.9 

185 .5 

146 .9 144 .4 142 .6 144.3 
148.5 148 .5 

146.8 

153.3 147 .8 149 .9 152.0 
1 51 . 1 153 .9 

154 . 7 

relationship between the specimen, magnesium standard, 
and aluminum standard: 

{(Al - Specimen) I (Mg - Specimen)} = 

{(180 - Specimencalibrated) / (150 - Specimen calibrated)} 

(2) 

where : Al = Aluminum WMGL, Mg = Magnesium 
WMGL; Specimen = WMGL of specimen of interest; 
and Specimencalibrated = WMGL of specimen after cali
bration. Al, Mg, and Specimen were measured during 
each imaging session. Solving the equation for 
Specimencalibrated yields the new calibrated WMGL for 
Specimen. 

Results 

The WMGLs for each BSE image prior to the retro
spective calibration are shown in Table 1. Over the 6 
day experimental period, the WMGL of each BSE image 
of inorganic material remained consistent, although there 
were minor fluctuations with no obvious pattern. A 
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Table 2. Calculated kurtosis for each specimen. Kurtosis is consistent between imaging sessions. 

Kurtosis 

Day 1-lmage 1 Day 1-lmage 2 Day 1-lmage 3 Day 3 Day 5 Day 7 

Chick I -0 . 14 -0 .02 -0 .02 -0.09 -0 .03 0.23 
Chick II 0.65 0 .85 0.96 
Chick Ill -0.39 -0.29 

Human I 0.74 0.66 0 .77 0 .56 0 .69 0.68 
Human II 0 .44 0.48 0 .49 
Human Ill 0 .73 0.57 

Antler I 0.50 0.57 0.55 0.48 0 .47 0.60 
Antler II 0 .60 0.56 0 .68 
Antler Ill 0.19 0 .30 

Mule Deer I 9 .47 10 .47 10.69 1 0 . 13 9.52 9.60 
Mule Deer I! 9.87 9.24 9.06 
Mule Deer Ill 10.24 9 .47 

Aluminum I 3.11 3 .43 3.48 3 .29 3.47 3 .23 
Aluminum II 3.19 2.84 2 .75 
Aluminum Ill 2.49 2 .34 

Magnesium I 6 .19 6.02 6 .39 6 .33 6 .30 6.31 
Magnesium II 6 .51 6.79 6 .87 
Magnesium Ill 6 .70 6.87 

Feldspar I 5.51 5 .55 5.52 4 .95 5.01 5 . 19 
Feldspar II 4 .94 4 .93 3 .47 
Feldspar Ill 4 .55 4.40 

2.5 -~ 0 - 2 n, 
Q) 
I.. 

<( 1.5 
"C 
Q) 
N 1 
n, 
E 
"- 0.5 
0 z 

0 

0 50 100 150 

Gray level 
Figure 4. Embryonic Chick Femur GHPs from Group I. Graylevels 150-255 were not shown in this graph, so that 
the GHPs could be seen more clearly. The shape of the GHPs remains consistent between imaging sessions. Day 1 -
Image 1: solid square; Day 1 - Image 2: open square; Day 1 - Image 3: solid diamond; Day 3: open diamond; Day 

5: solid triangle; and Day 7: open triangle . 
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Figure 5. Aluminum GHPs from Group I. Graylevels 0-100 were not shown in this graph, so that the GHPs could 
be seen more clearly. The shape of the GHPs remains consistent between imaging sessions. Placement of the GHPs 
on the gray level scale remained consistent between imaging sessions. Day 1 - Image 1: solid square; Day 1 - Image 
2: open square; Day 1 - Image 3: solid diamond; Day 3: open diamond; Day 5: solid triangle; and Day 7: open triangle. 

slight increase in WMGL with time occurred in the bio
logical materials, but prior to the retrospective cali
bration , it is difficult to determine if it is a real trend or 
simply an artifact . 

Kurtosis tests revealed that the GHPs typically, and 
consistently, deviated to a minor degree from an ideal 
normal distribution (Table 2). The shapes of GHPs be
tween specimens ranged from very slightly platykurtic 
for the embryonic chick femur to moderately leptokurtic 
for the mule deer calcaneus. Kurtosis of the individual 
GHPs for each specimen, however, remained consistent 
throughout the course of the experiment . Figures 4 and 
5 present examples of GHPs from selected specimens 
that demonstrate the consistency of the siz.e, shape, and 
placement of the GHP over time in both biological and 
inorganic materials. 

Tests for skewness revealed similar findings. A 
moderate range of skewness values were observed be
tween specimens, but consistency between imaging ses
sions was observed for each region analyz.ed (Figs . 4 
and 5, and Table 3). Most specimens exhibit a slight 
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deviation from normality and are negatively skewed. 
The GHPs of the bones and pure materials were ob

served to be continuous and unimodal. Feldspar was the 
only exception, with a GHP that tended towards bimo
dality . Figures 6 and 7 demonstrate the relative GHP 
shapes. For illustrative purposes, the figures represent 
cumulative GHPs for each specimen acquired over the 
six day interval (34]. 

The calibrated WMGLs for each BSE image are 
shown in Table 4. The calibrated WMGLs for alumi
num and magnesium from Group I were, by definition, 
150 and 180. The calibrated WMGLs for aluminum and 
magnesium from Group II and Group III were calculated 
with respect to Group I. After calibration, the consist
ency of the inorganic specimens was observed to im
prove. The average of one standard deviation for the 
inorganic specimens was 0.9 graylevels. Out of a possi
ble 250 graylevels, 0.9 represents 0.4% of the entire 
graylevel spectrum . The calibrated WMGLs for the bio
logical specimens were also consistent, but did show a 
slight trend towards increased brightness with time and/ 
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Table 3. Calculated skewness for each specimen. skewness is consistent between imaging sessions. Most specimens 
are negatively skewed. 

Skewness 

Day 1-lmage 1 Day 1-lmage 2 Day 1-lmage 3 Day 3 Day 5 Day 7 

Chick I -0.49 -0 .62 -0 .63 -0 .51 -0 .53 -0 .75 
Chick II -0 .24 -0 .23 -0 .30 
Chick Ill -0 .33 -0.40 

Human I -0.52 -0.53 -0 .55 -0 .51 -0.54 -0.53 
Human II -0 .58 -0 .59 -0 .58 
Human Ill -0 .52 -0.49 

Antler I 0 .09 -0 .04 -0 .06 0 .03 -0 .05 -0 .04 
Antler II 0 .18 0 .14 0 . 10 
Antler Ill 0 .07 -0.02 

Mule Deer I -2.05 -2 .20 -2 .24 -2 .16 -2 .09 -2.13 

Mule Deer II -2.11 -2.01 -2 .00 

Mule Deer Ill -1.94 - 1 .80 

Aluminum I -1 .03 -1 . 11 -1 . 14 - 1 .08 -1.08 - 1 .08 
Aluminum II -1 .00 -0 .95 -0.95 

Aluminum Ill -0 .98 -0.94 

Magnesium I -0 . 1 5 -0 .09 -0 .13 -0 .07 -0 .04 -0 .04 
Magnesium ii 0.28 0 .35 0 .31 
Magnesium Ill 0.18 0.16 

Feldspar I -1 .69 -1 .71 -1 .70 -1 . 62 -1 .63 - 1 .66 
Feldspar II - 1 .49 - 1.47 - 1 .26 
Feldspar Ill -1 .26 -1 .25 
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Figure 6 (at left). Cumulative GHPs for biological specimens. Open square: embryonic chick femur; solid diamond: 
mule deer antler; open diamond: human femur; solid square : mule deer calcaneus. 
Figure 7 (at right). Cumulative GHPs for inorganic specimens. Open square: magnesium; solid diamond: feldspar; 
solid square : aluminum. Arrow indicates suggestion of bimodality in Feldspar GHP . 

--------------------------------------------------------------------------------------------------

or number of times imaged. The average of one stand
ard deviation for the biological specimens was 5.9 gray-, 
levels. This represents 2.4 % of the entire gray level 
spectrum . Analysis of variance (ANOV A) comparing 
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the biological materials' calibrated WMGLs from Day 1 
and Day 7 showed a statistically significant increase 
(p < 0.01). WMGLs from biological materials in 
Group I increased more than WMGLs from biological 
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Table 4. Calibrated WMGLs for each specimen. WMGLs for inorganic materials show excellent consistency between 
imaging sessions. WMGLs for biological specimens are consistent but show a trend towards increased brightness with 
increased imaging. 

Calibrated Weighted Mean Graylevel (WMGL) 

Dav 1-lmaqe 1 Dav 1-lmacie 2 Dav 1-lmacie 3 Dav 3 Dav s Dav 7 Mean SD 

Chick I 76 .0 85 .1 
Chick II 75 .4 
Chick Ill 73 .3 

Human I 113 .9 118 . 7 
Human II 113 .9 
Human Ill 11 0 .6 

Antler I 75.6 84 . 1 
Antler II 76 .7 
Antler Ill 76 .5 

Mule Deer I 120 .0 128.1 
Mule Deer II 121 . 1 
Mule Deer Ill 121 .6 

Aluminum I 180 .0 180 .0 
Aluminum II 185 .0 
Aluminum Ill 181 .2 

Magnesium I 150 .0 150 .0 
Magnesium II 153 .7 
Magnesium Ill 152 . 1 

Feldspar I 153 .0 155 .4 
Feldspar II 154 .5 
Feldspar Ill 154 .8 

materials in Group III, although the difference was not 
statistically significant (p > 0.05). ANOVA for in
organic specimens comparing Day 1 and Day 7 showed 
no increase in WMGL with time (p = 0. 79). 

Discussion 

The results of this study support the hypothesis that 
most modem SEMs with computer-controlled settings, 
calibrated with pure metals, can give reliable, consistent 
results over extended periods of time in studies dealing 
with calibrated BSE images of mineral and calcified tis
sues. Variations in the WMGLs and in the size and 
shape of the GHPs of each of the biological and inorgan
ic materials remained consistent between operating ses
sions used in this investigation. 

An increase in calibrated WMGLs of the bone tis
sues was observed with sequential imaging. Significant 
increases in WMGL from Day 1 to Day 7 were ob
served. Boyce et al. [5] described this phenomenon as 
"bleaching" and it has been attributed to specimen and/ 
or embedding media degradation [7, 14] that is caused 
by prolonged scanning with a high energy electron 

87 .8 82 .4 83 .6 96 .8 85 .3 6 .9 
81. 1 87 .8 81 .4 6 .2 

85 .8 79 .5 8 .9 

120 .9 118 .2 118 .3 123 .6 118 . 9 3 .2 
118 .3 123 .0 118 .4 4 .5 

118 .2 114 .4 5.4 

87.2 83 .3 81 .8 90 .5 83.8 5 .0 Avg. SD 
83 .9 90 .8 83 .8 7 .0 Biological 

90.6 83 .6 10 .0 5.9 

129 .3 126 .8 127 .9 129 .6 127 .0 3 .5 
126 .7 129 .3 125 .7 4 .2 

129 .8 125 .7 5 .8 

180 .0 180 .0 180 .0 180 .0 
183 .7 183 .2 184 .0 1 .0 

180 .7 181 .0 0 .4 

150.0 150.0 150 .0 150 .0 Avg. SD 
153.3 153 . 1 153 .3 0 .3 Inorganic 

151 .8 152 .0 0 .2 0 .9 

154 .8 152 .7 155 .9 155 .7 154 .6 1 .4 
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155 .4 157. 1 155 . 7 1 .3 
157 .7 156 .3 2 .0 

beam. The data obtained from the biological specimens 
in Group I on Day 7 was an average of 13.8 graylevels 
higher than the data obtained on the same fields six days 
earlier . Data from the biological specimens in Group III 
on Day 7 was an average of 10.6 graylevels higher than 
the data obtained from the same fields six days earlier. 
This would indicate that the number of times imaged 
may affect the extent of bleaching, and a large portion 
of the bleaching occurs during the first or second image 
capture. It should also be noted that the bleaching was 
greatest in the embryonic chick femur and the deer ant
ler (average WMGL increase: 16.7 and 14.5, respective
ly), both of which were more porous than the other 
specimens, have an inherently lower mineral content, 
and conversely a higher collagen content. These results 
may indicate changes in the embedding media and/or 
organic matrix lead to bleaching and an increase in 
WMGL. 

The variation in calibrated WMGL for the pure 
metals between Day 1 and Day 7 was far less than that 
of the biological specimens. By definition, the change 
in WMGL for Group I was zero. The average change 
in WMGL for Groups II and III were -1.2 graylevels 
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and -0.4 graylevels, which validates their use as stand
ards for calibrating the BSE/SEM environment between 
imaging sessions on different days. No signs of bleach
ing in any of the inorganic specimens were observed. In 
his review of work by Boyce et al. [5], Dr. V.N.E. 
Robinson had suggested that the use of pure metals as 
standards for long BSE imaging experiments would be 
hampered by the progressive increase in thickness of an 
oxide layer. The retrospective calibration method used 
in the present study ~ould mask these changes, how
ever, the results of the metal standards prior to cali
bration show that even if the oxidation layer increased 
on the magnesium and aluminum standards over the 
course of the 6 day experiment, the WMGLs remained 
consistent (Table 1). Additionally, the limited variability 
between calibrated WMGLs from Group I, II, and III in 
the metal standards suggests homogeneity within the 
specimens. This homogeneity is essential if metals are 
to be used for calibration standards. 

The physical basis for the shape of a GHP obtained 
from BSE images of bone, minerals, and other materials 
is not completely understood [25, 34, 39). Several in
vestigators have interpreted these GHPs as being prima
rily a representation of a distribution of mineral densities 
[6, 8, 21, 29) corresponding to the sampled regions of 
the imaged material. Other investigators have suggested 
that the non-normal kurtosis and skewness of these dis
tributions, although partially influenced by variations in 
mineral content, are also strongly affected by the inter
related variables of electronic noise and topographic ir
regularities [5, 25] on the specimen surface. Kurtosis 
and skewness data obtained in this study demonstrate 
consistent differences in the shape of the GHPs between 
species and between the biological and inorganic mate
rials. The data show that these differences are not indi
cative of the Gaussian distribution that would be expect
ed if the GHP is solely a representation of electronic 
noise (Tables 2 and 3, and Figs. 6 and 7). Therefore, 
to some extent, these differences are influenced by the 
characteristics of the material of each specimen. 

Ex~mination of mineral density distributions of bone 
powders ( ~ 50 µm diameter) obtained by density frac
tionation techniques helps to clarify the kurtosis and 
skewness data of the bone tissues listed in Tables 2 and 
3. Published histogram distributions of density frac
tionated powders of bone from various species [3, 19, 
20, 26, 28, 31) invariably show the presence of negative 
skewness. The absence of positive skewness, or curve 
asymmetry, can be attributed to the rather abrupt trunca
tion of mineraliz.ation at higher bone mineral densities. 
This truncation is related to bone remodeling rates and 
to the primary and secondary phases of osteon minerali
zation [19). During the initial 65% of mineralization 
(primary phase), mineral content of a bone progressively 
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increases by the addition of mineral crystallites within 
and upon the collagenous matrix [16, 19, 35). In the 
secondary phase of mineralization, increases in crystal 
size are thought to account for the remaining 35 % of the 
final mineral content [ 19) in a specific bone type. In 
contrast to primary mineralization which can represent 
a broad, continuous range of mineraliz.ation from no 
mineral to approximately 65 % of full mineralization 
[19), secondary mineraliz.ation affects a narrower range 
of mineralization which becomes relatively sharply limit
ed as higher bone mineral densities are approached. In 
other words, the lower end of a mineral density distribu
tion of fractionated bone powders appears quasi-asymp
totic. In contrast, toward the higher end of the density 
distribution, the increase is not progressive, but becomes 
abruptly truncated. The negative skewness of GHPs ob
tained from the BSE images of bone tissues may be in
fluence.d by these differences. This interpretation does 
not, however, explain the negative skewness seen in 
pure aluminum. Pure aluminum does not have a mineral 
density distribution which would contribute to the nega
tive skewness. 

Residual topographic irregularity of the specimen 
surface of most of the biological and inorganic materials 
may contribute to the negative skewness. For example, 
the negative skewness of the aluminum standard, which 
was not seen in the magnesium standard, can be attrib
uted to relatively more residual surface irregularities 
which were recognized in a retrospective examination of 
the imaged regions. We hypothesize that residual topo
graphic irregularities, such as minute scratches, are 
more likely to occur in aluminum because it is softer 
than the magnesium composite used in this study. In 
bone tissues, it is also difficult to eliminate all surface 
topography [32). As theorized by Howell and Boyde 
[25), topography effects may not symmetrically affect 
GHPs. 

The progressive increase in kurtosis seen from the 
chick femur to the deer calcaneus (Table 2) can be ex
plained in the context of differences in the remodeling 
rates of these bones. Remodeling in the cranial cortex 
of the deer calcaneus has been shown to be relatively in
active [36, 37). Glimcher [16) suggests that bone re
modeling in the chick embryo is so rapid that its entire 
bone volume may be renewed in only a few days. Addi
tionally, a large percentage of the total bone volume 
would be expected to be composed of rapidly forming 
woven bone, which has a lower mineral content. Conse
quently, in embryonic bone, density fractionation data of 
bone powders shows a broad range of mineralization, 
which is seen as a negative kurtosis in histograms of 
density fractionation data [20, 31) and in the GHPs of 
BSE images [35]. In contrast, the narrower GHPs 
(higher kurtosis) of the BSE images of the cranial cortex 
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of the deer calcaneus reflect the fact that the bone, on 
average, is uniformly older, and hence a relatively larger 
percentage of the cortical volume of this region has un
dergone secondary mineralization and less residual wo
ven bone is present. The bone is typically more uniform 
than an embryonic chick femur. The slight positive kur
tosis exhibited by the GHPs of the BSE images of the 
middle aged human femur specimen partially reflects the 
moderate breadth of the distributions of bone mineraliza
tion that would be expected in this bone since it is likely 
to have a low to moderate remodeling rate [27 (pages 
214-217)]. The kurtosis of the mule deer antler, and to 
a lesser extent the other bone specimens, is also influ
enced by regional heterogeneities in mineralization [4, 
10, 11, 18, 27 (pages 20-52); unpublished observations 
of BSE images of deer antler cross-sections] which are 
seen as hypermineralization near lacunae, mineral varia
tions across secondary osteons, and variable mineraliza
tion in cement-lines or cement-line-like structures. 

However, because of the superimposed influences of 
electronic noise, surface topography, and electron ener
gy distributions on BSE image GHPs, it is not possible 
to "dissect" out the relative contribution that mineraliza
tion has in affecting the graylevel of each image pixel. 
The results of this study for pure metals do not support 
the hypothesis that GHPs of bone are solely a represen
tation of a mineralization profile. Pure metals would be 
expected to be confined to one graylevel corresponding 
to a uniform density and atomic number, rather than a 
broad spectrum of graylevels as is invariably observed. 
The relative breadth, or kurtosis, of the GHP cannot be 
interpreted as representative of the mineral density pro
file, as has been attempted by Mechanic et al. [29], 
Torontali et al. [39], and Boyde et al. [7], without ac
counting for other variables mentioned above. The au
thors of the present study caution against making this 
interpretation until the physical meaning of the GHP is 
more clearly understood. 

Although electronic noise, surface topography, and 
various other interrelated variables can contribute to al
tering apparent atomic number contrast of a BSE image, 
the BSE/SEM imaging session can be calibrated to keep 
precision error at an acceptably low level. Progressive 
"bleaching" of bones with prolonged imaging is a poten
tial problem which should be considered during image 
capture. Pure metal calibration standards do not display 
the "bleaching" phenomenon and produce extremely con
sistent results. More work is needed to advance current 
understanding of the physical basis of GHPs obtained 
from minerals, calcified tissues, and other materials 
imaged in the BSE mode of the SEM. 
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Discussion with Reviewers 

P. Roschger: Because of the lacking online adjustment 
of reference graylevels (WMGLs), the authors intro
duced a useful method (equation 2) for retrospective cal
ibration (correction) of specimen WMGLs, however, 
such corrections cannot be made for the GHPs. There
fore, if GHPs have to be combined and evaluated, a 
maximal accuracy in reference WMGLs in advance 
should be intended. 
Authors: It is correct that the retrospective calibration 
proposed in this study does not calibrate GHPs, only 
WMGLs. However, as we stated at the end of Discus
sion, the interpretation of the GHP is still uncertain and 
we do not advocate the use of GHPs in the description 
of bone minerali7.ation until a further experimentally 
based understanding is developed. WMGLs, on the 
other hand, have been described and correlated to the 
mineral content and density of bone tissues [34, 35]. 

P. Roschger: The WMGLs of the references Al and 
Mg are only 30 graylevels apart from each other and 
small deviations from the ideal value can introduce rela
tively large changes in BSE-image contrast. To use a 
second reference with a lower atomic number (Z) than 
that of Mg (Z = 12) would be advantageous. 
Authors: Carbon (Z = 6) is a suitable pure element 
with Z less than bone (Z ranges from 9 to 11) that has 
been used in previous BSE studies as a calibration stand
ard. Unfortunately, the working range to image both 
carbon and magnesium is six atomic numbers (12 - 6 = 
6), which is less than that required to image both bone 
and aluminum (4 atomic numbers; 13 - 9 = 4). There
fore, the introduction of carbon necessitates a loss of 
sensitivity, because a larger atomic number range must 
be compressed into the same 256 graylevels. The 30 
graylevel range between Al and Mg in this study could 
clearly be increased, to gain more sensitivity, by a suita
ble adjustment in contrast. The use of carbon would be 
advantageous, however, iflow atomic number osteoid or 
unmineralized bone were to be analyzed in the same 
operating sessions as normal mineralized bone. 

P. Roschger: This study was designed to evaluate the 
consistency of BSE images and the resulting GHPs from 
different standards and bone tissues. Thus, a discussion 
of the effects of (surface) artifacts etc. on the different 
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biological specimen blocks seems appropriate. How
ever, the influences of different mineral contents and 
compositions on the GHPs of these biological specimens, 
also with respect to their remodelling activities, are in 
the authors' opinion not yet so well understood to use 
GHPs for their description. So, why then are they dis
cussed at such length in this methodological paper, with
out showing respective BSE-images? This should better 
go into a separate publication on this matter, also be
cause GHP's seem well suited to characterize mineral 
distributions in different calcified tissues, as it was 
meanwhile demonstrated by the investigations of this 
BSE-method [41]. 
Authors: We do not believe that GHPs of bones are 
adequately understood at this point in time to interpret 
the height of a GHP at any one point as solely represen
tative of the amount of tissue of a given mineral density, 
although this bas been attempted in the literature [6, 8, 
21, 29, 39]. Clearly, other artifacts affect the shape of 
the GHP as evidenced by the GHPs of pure elemental 
standards. However, this does not mean that mineral 
densities in bone have no influence upon GHPs and we 
would be remiss if we did not discuss this influence. 
Obviously, there are differences in the shapes of GHPs 
of different bones (Fig. 6) and we have attempted in this 
study to account for some of these differences to better 
understand the physical basis of the GHP. We have not 
provided BSE images of each specimen in this study be
cause we felt it would be excessive as we have already 
provided GHPs (Figs. 6 and 7) for each specimen. 

J. Hejna: Progressive "bleaching" of bones with pro
longed imaging claimed in the paper is not fully con
firmed by results of WMGL measurements in Table 4. 
There are large fluctuations of results in the course of 
the study. 
P. Roschger: The "bleaching" phenomenon should be 
studied separately within one (not within multiple) cali
brated BSE-imaging session by multiple prolonged scans 
of a defined bone area. It would provide useful infor
mation about the tolerable scanning time at a defined 
beam current and size of scanned area for quantitative 
BSE-imaging. However, the strategy for quantitative 
BSE-imaging should be to keep the exposure time of the 
analysed bone area to the electron beam as short as 
possible. 
Authors: This study was not designed solely to exam
ine the bleaching phenomenon in bone. In fact, bleach
ing proved to be a complication in our effort to show 
consistency in quantitative BSE graylevel analysis. The 
results in this study with regard to bleaching are not 
conclusive and Dr. Roschger has suggested the next 
logical study which we have already begun in our 
laboratory. 
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A. Boyde: Metals can be used to standardise one instru
ment provided that, as would be expected to be the case, 
working distance and repositioning of the standard field 
were exactly maintained. It cannot be used to calibrate 
the microscope because unpredictable channelling con
trast effects would determine the exact mean value 
which is obtained and this will vary from sample to sam
ple of the standard material. In our laboratories we used 
pure metals and minerals to calibrate the BSE signal in 
our earliest studies in our home-made histogram-only ac
quisition system described by Howell and Reid [40] and 
we have always been aware of the problems of anoma
lous histogram widths and shapes from so called pure 
standards. Metals and minerals have large crystals. 
Unless one assumes perfect randomisation of order with
in the layer depth sampled by the electron beam, then 
channelling contrast effects can neither be ignored, nor 
can they be dealt with. This is the reason not to choose 
them as standards. 
Authors: You are correct in stating that pure metals 
can be used to standardise one instrument, as has been 
experimentally demonstrated in this study. Electron 
channelling patterns are typically very obvious when 
present, and were not observed in this study. This is 
not surprising, as the mechanical grinding and polishing 
methods used in specimen preparation produces a thin 
layer of highly stressed, disordered, and damaged mate
rial (the "Bilby layer") [17 (page 549)]. This effectively 
eliminates the production of channeling contrast patterns. 
We do not feel that the "anomalous histogram widths 
and shapes" are the result of channelling contrast. 

In response to your remarks concering the variabili
ty of the graylevel mean value between pure samples, 
we have analyzed six pure (99.9999%) aluminum stand
ards. Three were prepared as previously described in 
this study and three were provided by Tousimis Re
search Inc. (Rockville, MD). Aluminum standards from 
Tousismis had been prepared by diamond polishing . 
BSE images were consecutively captured in one imaging 
session and WMGLs were calculated with the following 
results: 

Al #1 WMGL 118.9 
Al #2 WMGL 118.2 
Al #3 WMGL 118.1 

Tousimis Al #1 WMGL 124.9 
Tousimis Al #2 WMGL 124.3 
Tousimis Al #3 WMGL 124.5 

Clearly, the variability between similarly prepared speci
mens is minor. The preparation methods, however, ap
pear to influence WMGL. This suggests topographical 
effects may play a role. If it were indeed a result of 
electron channelling effects, consistency between simi-
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larly prepared specimens would not be expected as Prof. 
Boyde has mentioned. Future investigators should ade
quately describe the preparation methods to allow for 
reproduction of their work. 

A. Boyde: Have the authors studied the surface profile 
of the material prepared by their protocol of milling, 
grinding and buffing? 
Authors: We have analyzed the surface profile using 
optical phase shifting and vertical scanning interferome
try (WYKO Corporation, Tucson, AZ) and have ob
served small (typically on the order of ± 0.5 µm) topo
graphical irregularities. We are currently investigating 
the influence of this subtle topography upon BSE 
WMGLs. 

M. Grynpas: In Discussion, you say: "it is not possi
ble to "dissect" out the relative contribution that miner
alization has in affecting the graylevel of each image 
pixel", but if various bone specimens are prepared in an 
identical manner, what else would the difference in gray
level histograms reflect beside differences in mineraliza
tion profiles? 
Authors: Undoubtedly, electronic noise plays a role in 
shaping the GHP and is not necessarily consistent be
tween similarly prepared specimens. This study and the 
report by Howell and Boyde [25] suggests that topogra
phy also influences GHPs. Because bone is extremely 
heterogenous, it cannot be assumed that topographical 
variations at the submicron level are consistent between 
similarly prepared specimens. The introduction of sur
face ultracracks [32] can be particularly problematic. 
Relative differences between GHPs may be the result of 
differences in mineralization profiles, but at this point, 
there is no experimental evidence that allows interpreta
tion of the height of the GHP at any one point as repre
senting the amount of calcified tissue of a given density. 

J. Hejna: The authors sputter coated specimens with 
gold. Gold is not a good choice as a coating metal for 
material contrast studies, especially on low density spec
imens. Additionally, the thickness of the layer was not 
measured. I suggest to repeat experiments on specimens 
coated with low density material of known thickness. 
Layers of carbon or aluminum, or a very thin layer of 
chromium can be recommended. It would also be good 
to coat the calibrating standards. 
Authors: It is true that the thin layer of gold used in 
this study is not ideal because it would increase the 
mean atomic number of all of the specimens. On the 
other hand, carbon, or any other low density coating, 
would decrease the mean atomic number of all 
specimens. Any coating material would affect the mean 
atomic number of a sample. This is an unfortunate 
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consequence of making a specimen electrically 
conductive. If the coating is thin, even with a high 
atomic number element such as gold, Z contrast between 
bone specimens can still be observed and correlated to 
density and mineral content as was previously 
demonstrated by Skedros et al. [34, 35]. Because we 
were not interested in measuring the atomic number of 
the specimens in this study, it was not necessary to 
know the exact coating thickness. It was only necessary 
to insure that the coating was thin enough that Z contrast 
could still be observetl. The calibrating standards used 
in this study were coated with gold as described in the 
Materials and Methods . 

K. Murata: You scan the beam in an area of about 500 
µm x 500 µm at a magnification of 200. Assuming 500 
x 500 pixels for one frame scan, the area of one pixel is 
1 µm2. Is your probe size smaller than this area? What 
is the probe size? 
Authors: If bone is assumed to have an atomic number 
intermediate to carbon and aluminum ( ~ 9.5) then the 
Kanaya-Okayama Range (Rk0 ) [17 (page 89)] for 
electron penetrations in bone would be 9 .4 µm. 
Approximately 80% of the backscattered electrons would 
be generated in a radial distance 0.46 Rko [17 (page 
104)] from the point of electron probe contact, which 
corresponds to a radial spread of 4.3 µm. This is a 
rough estimate of the interaction volume, but it 
demonstrates that the operating conditions used in this 
study did not provide optimal resolution. Resolution 
was sufficient, however, to distinguish morphologic 
features within the bone tissues, such as, individual 
lacunar spaces, lamellae, and canaliculi. Resolution 
could be improved in future studies, if necessary, by 
decreasing the accelerating voltage and to a lesser extent 
the probe diameter (increasing condenser lens strength). 

K. Murata: Have you observed the GHP with second
ary electrons (SEs)? I understand that backscattered 
electrons have a higher Z contrast. But SEs have a bet
ter topography contrast. So, it is interesting to see what 
type of GHP is obtained with the SEs. 
Authors: The GHP of an SE image is largely the result 
of topography, and therefore, specimen preparation 
methods. A "rough" surface would have more topogra
phy and hence a broader GHP than a "smooth" surface . 
This would not, however, provide any insight into the 
actual height of these topographical irregularities. 

K. Murata: Have you observed the GHP by keeping 
the beam stationary at a fixed position on the standard 
sample? As a matter of fact, the beam has to be digit
ized. The GHP thus obtained is free of the effect of 
topography although the contamination cannot be 
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neglected. 
P. Roschger: Have you observed fluctuations in the 
BSE-signal and then determined their pulse height dis
tribution (i.e., GHP of the signal itself), when the beam 
is kept stationary at a fixed position on the standard 
sample? 
Authors: We have not yet observed these fluctuations. 
This would provide insight to the noise inherent in this 
system, although it is unlikely to explain all of the varia
tions in skewness and kurtosis that we have observed. 
This is an area that should be investigated in future 
experiments to help improve our understanding of 
GHPs. 

K. Murata: Do the shape and broadness of the GHP 
change with the incident beam energy? 
Authors: The breadth of the GHP changes with beam 
energy, the general "shape" or appearance of the GHP 
remains relatively consistent. The nature of the relation
ship between beam energy and GHP breadth has not 
been closely examined. 

H. Plenk, Jr.: When the authors discuss the reasons 
for the negative skewness of "pure" aluminum wire and 
noticed surface irregularities as a possible reason, why 
did they not think of the metallic structure itself? The 
aluminum wire was most likely drawn, what was the 
metallurgical structure and crystallinity, what was the 
composition of oxides and other phases? 
Authors: The broad histogram and negative skewness 
present in aluminum has been observed in many "pure" 
elements (Si, Cu, Au, Ti, V, C) imaged in our laborato
ry. The purity of these reference standards has been 
documented (Tousimis Research, Rockville, MD). The 
oxidation characteristics of these materials are greatly 
varied. Structure, crystallinity, oxidation, and impurities 
in the standards undoubtedly influence the GHPs, but 
they do not adequately explain the consistently broad 
and negatively skewed GHPs which are virtually always 
observed regardless of material or manufacturing meth
od. We have provided hypotheses to explain the GHPs, 
but the physical basis of the histogram is still unclear to 
us. 
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