17 research outputs found
Acute Delta Hepatitis in Italy spanning three decades (1991–2019): Evidence for the effectiveness of the hepatitis B vaccination campaign
Updated incidence data of acute Delta virus hepatitis (HDV) are lacking worldwide. Our aim was to evaluate incidence of and risk factors for acute HDV in Italy after the introduction of the compulsory vaccination against hepatitis B virus (HBV) in 1991. Data were obtained from the National Surveillance System of acute viral hepatitis (SEIEVA). Independent predictors of HDV were assessed by logistic-regression analysis. The incidence of acute HDV per 1-million population declined from 3.2 cases in 1987 to 0.04 in 2019, parallel to that of acute HBV per 100,000 from 10.0 to 0.39 cases during the same period. The median age of cases increased from 27 years in the decade 1991-1999 to 44 years in the decade 2010-2019 (p < .001). Over the same period, the male/female ratio decreased from 3.8 to 2.1, the proportion of coinfections increased from 55% to 75% (p = .003) and that of HBsAg positive acute hepatitis tested for by IgM anti-HDV linearly decreased from 50.1% to 34.1% (p < .001). People born abroad accounted for 24.6% of cases in 2004-2010 and 32.1% in 2011-2019. In the period 2010-2019, risky sexual behaviour (O.R. 4.2; 95%CI: 1.4-12.8) was the sole independent predictor of acute HDV; conversely intravenous drug use was no longer associated (O.R. 1.25; 95%CI: 0.15-10.22) with this. In conclusion, HBV vaccination was an effective measure to control acute HDV. Intravenous drug use is no longer an efficient mode of HDV spread. Testing for IgM-anti HDV is a grey area requiring alert. Acute HDV in foreigners should be monitored in the years to come
The Belle II Physics Book
We present the physics program of the Belle II experiment, located on the
intensity frontier SuperKEKB collider. Belle II collected its first
collisions in 2018, and is expected to operate for the next decade. It is
anticipated to collect 50/ab of collision data over its lifetime. This book is
the outcome of a joint effort of Belle II collaborators and theorists through
the Belle II theory interface platform (B2TiP), an effort that commenced in
2014. The aim of B2TiP was to elucidate the potential impacts of the Belle II
program, which includes a wide scope of physics topics: B physics, charm, tau,
quarkonium, electroweak precision measurements and dark sector searches. It is
composed of nine working groups (WGs), which are coordinated by teams of
theorist and experimentalists conveners: Semileptonic and leptonic B decays,
Radiative and Electroweak penguins, phi_1 and phi_2 (time-dependent CP
violation) measurements, phi_3 measurements, Charmless hadronic B decay, Charm,
Quarkonium(like), tau and low-multiplicity processes, new physics and global
fit analyses. This book highlights "golden- and silver-channels", i.e. those
that would have the highest potential impact in the field. Theorists
scrutinised the role of those measurements and estimated the respective
theoretical uncertainties, achievable now as well as prospects for the future.
Experimentalists investigated the expected improvements with the large dataset
expected from Belle II, taking into account improved performance from the
upgraded detector.Comment: 689 page
Growth inhibition by the farnesyltransferase inhibitor FTI-277 involves Bcl-2 expression and defective association with Raf-1 in liver cancer cell lines
Farnesyltransferase inhibitors (FTIs) block the growth of tumor cells in vitro and in vivo with minimal toxicity toward normal cells. In general, inhibition of protein farnesylation results in G0/G1 cell cycle block, G2/M cell cycle arrest, or has no effect on cell cycle progression. One aspect of FTI biology that is poorly understood is the ability of these drugs to induce cancer cell growth arrest at the G2/M phase of cell cycle. In the present study, we investigated the effects of the farnesyltransferase inhibitor FTI-277 on two human liver cancer cell lines, HepG2 and Huh7. Treatment of these cells with FTI-277 inhibited Ras farnesylation in a dose-dependent manner. Both HepG2 and Huh7 cell growth was inhibited by FTI-277 and cells accumulated at the G2/M phase of the cell cycle. In HepG2 and Huh7 cells, FTI-277 induced an up-regulation of the cyclin-dependent kinase inhibitor p27(Kip1) without affecting the cellular levels of p53 and p21(Waf1). This event correlated with reduced activity of the cyclin-dependent kinase 2 and cyclin-dependent kinase 1. Moreover, increased expression of Bcl-2 protein was observed in HepG2 and Huh7 cells treated with FTI-277, and this was coincidental with reduced association between Raf-1 and Bcl-2. Finally, transient transfection of a dominant-negative Ras allele induced Bcl-2 expression and reduced Bcl-2/Raf-1 association demonstrating a requirement for Ras. Taken together, these findings show that increased expression of p27(Kip1) and Bcl-2 is concomitant with altered association between Ras, Raf-1 and Bcl-2 and suggest that this is responsible for the growth-inhibitory properties of FTI-277
Structural Variants at the LMNB1 Locus: Deciphering Pathomechanisms in Autosomal Dominant Adult-Onset Demyelinating Leukodystrophy
Objectives: We aimed to elucidate the pathogenic mechanisms underlying autosomal dominant adult-onset demyelinating leukodystrophy (ADLD), and to understand the genotype/phenotype correlation of structural variants (SVs) in the LMNB1 locus. Background: Since the discovery of 3D genome architectures and topologically associating domains (TADs), new pathomechanisms have been postulated for SVs, regardless of gene dosage changes. ADLD is a rare genetic disease associated with duplications (classical ADLD) or noncoding deletions (atypical ADLD) in the LMNB1 locus. Methods: High-throughput chromosome conformation capture, RNA sequencing, histopathological analyses of postmortem brain tissues, and clinical and neuroradiological investigations were performed. Results: We collected data from >20 families worldwide carrying SVs in the LMNB1 locus and reported strong clinical variability, even among patients carrying duplications of the entire LMNB1 gene, ranging from classical and atypical ADLD to asymptomatic carriers. We showed that patients with classic ADLD always carried intra-TAD duplications, resulting in a simple gene dose gain. Atypical ADLD was caused by LMNB1 forebrain-specific misexpression due to inter-TAD deletions or duplications. The inter-TAD duplication, which extends centromerically and crosses the 2 TAD boundaries, did not cause ADLD. Our results provide evidence that astrocytes are key players in ADLD pathology. Interpretation: Our study sheds light on the 3D genome and TAD structural changes associated with SVs in the LMNB1 locus, and shows that a duplication encompassing LMNB1 is not sufficient per se to diagnose ADLD, thereby strongly affecting genetic counseling. Our study supports breaking TADs as an emerging pathogenic mechanism that should be considered when studying brain diseases. ANN NEUROL 2024
Analysis of LMNB1 Duplications in Autosomal Dominant Leukodystrophy Provides Insights into Duplication Mechanisms and Allele-Specific Expression
Autosomal dominant leukodystrophy (ADLD) is an adult onset demyelinating disorder that is caused by duplications of the lamin B1 (LMNB1) gene. However, as only a few cases have been analyzed in detail, the mechanisms underlying LMNB1 duplications are unclear. We report the detailed molecular analysis of the largest collection of ADLD families studied, to date. We have identified the minimal duplicated region necessary for the disease, defined all the duplication junctions at the nucleotide level and identified the first inverted LMNB1 duplication. We have demonstrated that the duplications are not recurrent; patients with identical duplications share the same haplotype, likely inherited from a common founder and that the duplications originated from intrachromosomal events. The duplication junction sequences indicated that nonhomologous end joining or replication-based mechanisms such fork stalling and template switching or microhomology-mediated break induced repair are likely to be involved. LMNB1 expression was increased in patients’ fibroblasts both at mRNA and protein levels and the three LMNB1 alleles in ADLD patients show equal expression, suggesting that regulatory regions are maintained within the rearranged segment. These results have allowed us to elucidate duplication mechanisms and provide insights into allele-specific LMNB1 expression levels