4,725 research outputs found

    Competition of fusion and quasi-fission in the reactions leading to production of the superheavy elements

    Full text link
    The mechanism of fusion hindrance, an effect observed in the reactions of cold, warm and hot fusion leading to production of the superheavy elements, is investigated. A systematics of transfermium production cross sections is used to determine fusion probabilities. Mechanism of fusion hindrance is described as a competition of fusion and quasi-fission. Available evaporation residue cross sections in the superheavy region are reproduced satisfactorily. Analysis of the measured capture cross sections is performed and a sudden disappearance of the capture cross sections is observed at low fusion probabilities. A dependence of the fusion hindrance on the asymmetry of the projectile-target system is investigated using the available data. The most promising pathways for further experiments are suggested.Comment: 8 pages, 7 figures, talk presented at 7th International School-Seminar on Heavy-Ion Physics, May 27 - June 1, 2002, Dubna, Russi

    Identification of the Mass Donor Star's Spectrum in SS 433

    Get PDF
    We present spectroscopy of the microquasar SS 433 obtained near primary eclipse and disk precessional phase Psi = 0.0, when the accretion disk is expected to be most ``face-on''. The likelihood of observing the spectrum of the mass donor is maximized at this combination of orbital and precessional phases since the donor is in the foreground and above the extended disk believed to be present in the system. The spectra were obtained over four different runs centered on these special phases. The blue spectra show clear evidence of absorption features consistent with a classification of A3-7 I. The behavior of the observed lines indicates an origin in the mass donor. The observed radial velocity variations are in anti-phase to the disk, the absorption lines strengthen at mid-eclipse when the donor star is expected to contribute its maximum percentage of the total flux, and the line widths are consistent with lines created in an A supergiant photosphere. We discuss and cast doubt on the possibility that these lines represent a shell spectrum rather than the mass donor itself. We re-evaluate the mass ratio of the system and derive masses of 10.9 +/- 3.1 Msun and 2.9 +/- 0.7 Msun for the mass donor and compact object plus disk, respectively. We suggest that the compact object is a low mass black hole. In addition, we review the behavior of the observed emission lines from both the disk/wind and high velocity jets.Comment: submitted to ApJ, 24 pages, 7 figure

    LOFAR tied-array imaging and spectroscopy of solar S bursts

    Get PDF
    Context. The Sun is an active source of radio emission that is often associated with energetic phenomena ranging from nanoflares to coronal mass ejections (CMEs). At low radio frequencies (<100 MHz), numerous millisecond duration radio bursts have been reported, such as radio spikes or solar S bursts (where S stands for short). To date, these have neither been studied extensively nor imaged because of the instrumental limitations of previous radio telescopes. Aims. Here, LOw Frequency ARray (LOFAR) observations were used to study the spectral and spatial characteristics of a multitude of S bursts, as well as their origin and possible emission mechanisms. Methods. We used 170 simultaneous tied-array beams for spectroscopy and imaging of S bursts. Since S bursts have short timescales and fine frequency structures, high cadence (~50 ms) tied-array images were used instead of standard interferometric imaging, that is currently limited to one image per second. Results. On 9 July 2013, over 3000 S bursts were observed over a time period of ~8 h. S bursts were found to appear as groups of short-lived (<1 s) and narrow-bandwidth (~2.5 MHz) features, the majority drifting at ~3.5 MHz s-1 and a wide range of circular polarisation degrees (2−8 times more polarised than the accompanying Type III bursts). Extrapolation of the photospheric magnetic field using the potential field source surface (PFSS) model suggests that S bursts are associated with a trans-equatorial loop system that connects an active region in the southern hemisphere to a bipolar region of plage in the northern hemisphere. Conclusions. We have identified polarised, short-lived solar radio bursts that have never been imaged before. They are observed at a height and frequency range where plasma emission is the dominant emission mechanism, however, they possess some of the characteristics of electron-cyclotron maser emission

    Heating of gas inside radio sources to mildly relativistic temperatures via induced Compton scattering

    Get PDF
    Measured values of the brightness temperature of low-frequency synchrotron radiation emitted by powerful extragalactic sources reach 10^11--10^12 K. If some amount of nonrelativistic ionized gas is present within such sources, it should be heated as a result of induced Compton scattering of the radiation. If this heating is counteracted by cooling due to inverse Compton scattering of the same radio radiation, then the plasma can be heated up to mildly relativistic temperatures kT~10--100 keV. The stationary electron velocity distribution can be either relativistic Maxwellian or quasi-Maxwellian (with the high-velocity tail suppressed), depending on the efficiency of Coulomb collisions and other relaxation processes. We derive several easy-to-use approximate expressions for the induced Compton heating rate of mildly relativistic electrons in an isotropic radiation field, as well as for the stationary distribution function and temperature of electrons. We also give analytic expressions for the kernel of the integral kinetic equation (one as a function of the scattering angle and another for the case of an isotropic radiation field), which describes the redistribution of photons in frequency caused by induced Compton scattering in thermal plasma. These expressions can be used in the parameter range hnu<< kT<~ 0.1mc^2 (the formulae earlier published in Sazonov, Sunyaev, 2000 are less accurate).Comment: 22 pages, 7 figures, submitted to Astronomy Letter

    Age-related gene and miRNA expression changes in airways of healthy individuals

    Get PDF
    © 2019, The Author(s). Knowledge on age-related miRNA changes in healthy individuals and their interaction with mRNAs is lacking. We studied age-related mRNA and miRNA expression changes and their interactions in normal airways. RNA and small RNA sequencing was performed on bronchial biopsies of 86 healthy individuals (age: 18–73) to determine age-related expression changes. Per age-related miRNA we determined the enrichment of age-related predicted targets and their correlation. We identified 285 age-related genes and 27 age-related miRNAs. Pathway enrichment showed that genes higher expressed with age were involved in synapse-related processes. Genes lower expressed with age were involved in cell cycle regulation, the immune system and DNA damage/repair. MiR-146a-5p, miR-146b-5p and miR-142-5p were lower expressed with increasing age and we found a significant enrichment for predicted targets of these miRNAs among genes that were higher expressed with age. The expression levels of the enriched predicted targets RIMS2 and IGSF1 were negatively correlated with both miR-146a-5p and miR-146b-5p. RIMS2 was present in the enriched process, i.e. positive regulation of synaptic transmission. In conclusion, genes decreased with ageing are involved in several of the ageing hallmarks. Genes higher expressed with ageing were involved in synapse-related processes, of which RIMS2 is potentially regulated by two age-related miRNAs

    Characterisation of nanoparticles by means of high-resolution SEM/EDS in transmission mode

    Get PDF
    Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Published under licence by IOP Publishing Ltd

    Imaging Jupiter's radiation belts down to 127 MHz with LOFAR

    Get PDF
    Context. Observing Jupiter's synchrotron emission from the Earth remains today the sole method to scrutinize the distribution and dynamical behavior of the ultra energetic electrons magnetically trapped around the planet (because in-situ particle data are limited in the inner magnetosphere). Aims. We perform the first resolved and low-frequency imaging of the synchrotron emission with LOFAR at 127 MHz. The radiation comes from low energy electrons (~1-30 MeV) which map a broad region of Jupiter's inner magnetosphere. Methods (see article for complete abstract) Results. The first resolved images of Jupiter's radiation belts at 127-172 MHz are obtained along with total integrated flux densities. They are compared with previous observations at higher frequencies and show a larger extent of the synchrotron emission source (>=4 RJR_J). The asymmetry and the dynamic of east-west emission peaks are measured and the presence of a hot spot at lambda_III=230 {\deg} ±\pm 25 {\deg}. Spectral flux density measurements are on the low side of previous (unresolved) ones, suggesting a low-frequency turnover and/or time variations of the emission spectrum. Conclusions. LOFAR is a powerful and flexible planetary imager. The observations at 127 MHz depict an extended emission up to ~4-5 planetary radii. The similarities with high frequency results reinforce the conclusion that: i) the magnetic field morphology primarily shapes the brightness distribution of the emission and ii) the radiating electrons are likely radially and latitudinally distributed inside about 2 RJR_J. Nonetheless, the larger extent of the brightness combined with the overall lower flux density, yields new information on Jupiter's electron distribution, that may shed light on the origin and mode of transport of these particles.Comment: 10 pages, 12 figures, accepted for publication in A&A (27/11/2015) - abstract edited because of limited character

    First LOFAR observations at very low frequencies of cluster-scale non-thermal emission: the case of Abell 2256

    Get PDF
    Abell 2256 is one of the best known examples of a galaxy cluster hosting large-scale diffuse radio emission that is unrelated to individual galaxies. It contains both a giant radio halo and a relic, as well as a number of head-tail sources and smaller diffuse steep-spectrum radio sources. The origin of radio halos and relics is still being debated, but over the last years it has become clear that the presence of these radio sources is closely related to galaxy cluster merger events. Here we present the results from the first LOFAR Low band antenna (LBA) observations of Abell 2256 between 18 and 67 MHz. To our knowledge, the image presented in this paper at 63 MHz is the deepest ever obtained at frequencies below 100 MHz in general. Both the radio halo and the giant relic are detected in the image at 63 MHz, and the diffuse radio emission remains visible at frequencies as low as 20 MHz. The observations confirm the presence of a previously claimed ultra-steep spectrum source to the west of the cluster center with a spectral index of -2.3 \pm 0.4 between 63 and 153 MHz. The steep spectrum suggests that this source is an old part of a head-tail radio source in the cluster. For the radio relic we find an integrated spectral index of -0.81 \pm 0.03, after removing the flux contribution from the other sources. This is relatively flat which could indicate that the efficiency of particle acceleration at the shock substantially changed in the last \sim 0.1 Gyr due to an increase of the shock Mach number. In an alternative scenario, particles are re-accelerated by some mechanism in the downstream region of the shock, resulting in the relatively flat integrated radio spectrum. In the radio halo region we find indications of low-frequency spectral steepening which may suggest that relativistic particles are accelerated in a rather inhomogeneous turbulent region.Comment: 13 pages, 13 figures, accepted for publication in A\&A on April 12, 201

    Experimental loophole-free violation of a Bell inequality using entangled electron spins separated by 1.3 km

    Get PDF
    For more than 80 years, the counterintuitive predictions of quantum theory have stimulated debate about the nature of reality. In his seminal work, John Bell proved that no theory of nature that obeys locality and realism can reproduce all the predictions of quantum theory. Bell showed that in any local realist theory the correlations between distant measurements satisfy an inequality and, moreover, that this inequality can be violated according to quantum theory. This provided a recipe for experimental tests of the fundamental principles underlying the laws of nature. In the past decades, numerous ingenious Bell inequality tests have been reported. However, because of experimental limitations, all experiments to date required additional assumptions to obtain a contradiction with local realism, resulting in loopholes. Here we report on a Bell experiment that is free of any such additional assumption and thus directly tests the principles underlying Bell's inequality. We employ an event-ready scheme that enables the generation of high-fidelity entanglement between distant electron spins. Efficient spin readout avoids the fair sampling assumption (detection loophole), while the use of fast random basis selection and readout combined with a spatial separation of 1.3 km ensure the required locality conditions. We perform 245 trials testing the CHSH-Bell inequality S≀2S \leq 2 and find S=2.42±0.20S = 2.42 \pm 0.20. A null hypothesis test yields a probability of p=0.039p = 0.039 that a local-realist model for space-like separated sites produces data with a violation at least as large as observed, even when allowing for memory in the devices. This result rules out large classes of local realist theories, and paves the way for implementing device-independent quantum-secure communication and randomness certification.Comment: Raw data will be made available after publicatio
    • 

    corecore