Measured values of the brightness temperature of low-frequency synchrotron
radiation emitted by powerful extragalactic sources reach 10^11--10^12 K. If
some amount of nonrelativistic ionized gas is present within such sources, it
should be heated as a result of induced Compton scattering of the radiation. If
this heating is counteracted by cooling due to inverse Compton scattering of
the same radio radiation, then the plasma can be heated up to mildly
relativistic temperatures kT~10--100 keV. The stationary electron velocity
distribution can be either relativistic Maxwellian or quasi-Maxwellian (with
the high-velocity tail suppressed), depending on the efficiency of Coulomb
collisions and other relaxation processes. We derive several easy-to-use
approximate expressions for the induced Compton heating rate of mildly
relativistic electrons in an isotropic radiation field, as well as for the
stationary distribution function and temperature of electrons. We also give
analytic expressions for the kernel of the integral kinetic equation (one as a
function of the scattering angle and another for the case of an isotropic
radiation field), which describes the redistribution of photons in frequency
caused by induced Compton scattering in thermal plasma. These expressions can
be used in the parameter range hnu<< kT<~ 0.1mc^2 (the formulae earlier
published in Sazonov, Sunyaev, 2000 are less accurate).Comment: 22 pages, 7 figures, submitted to Astronomy Letter