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B. Hensen,1, 2 H. Bernien,1, 2, ∗ A.E. Dréau,1, 2 A. Reiserer,1, 2 N. Kalb,1, 2 M.S. Blok,1, 2 J. Ruitenberg,1, 2

R.F.L. Vermeulen,1, 2 R.N. Schouten,1, 2 C. Abellán,3 W. Amaya,3 V. Pruneri,3, 4 M.W. Mitchell,3, 4

M. Markham,5 D.J. Twitchen,5 D. Elkouss,1 S. Wehner,1 T.H. Taminiau,1, 2 and R. Hanson1, 2, †

1QuTech, Delft University of Technology, P.O. Box 5046, 2600 GA Delft, The Netherlands
2Kavli Institute of Nanoscience Delft, Delft University of Technology,

P.O. Box 5046, 2600 GA Delft, The Netherlands
3ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of

Science and Technology, 08860 Castelldefels (Barcelona), Spain.
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EXPERIMENTAL

A. Experimental setup

The experiments are performed on individual NV centres that are naturally present in high purity type IIa chemical-
vapor deposition diamond samples (Element Six), with a 〈111〉 crystal orientation. In its negative charge state, the NV
centre ground state is an electronic spin triplet with total spin 1. The zero-field splitting separates the |ms = 0〉 and
|ms = ±1〉 levels by 2.88 GHz. Additionally we split the |ms = ±1〉 levels by 0.14 GHz using a static magnetic field
applied along the defect axis. We use the two levels |ms = 0〉 and |ms = −1〉, denoted as | ↑〉 and | ↓〉, respectively.
We use microwave control pulses, applied via a gold stripline deposited on the sample surface, to rotate the electronic
ground state spin. The carrier frequency of the pulses is resonant with the |ms = 0〉 to |ms = −1〉 ground state
transition. The electronic spin resonance spectrum of both NV centres is split into three lines by the hyperfine
interaction with the host nitrogen nuclear spin of the defect. Therefore, we chose a Hermite pulse envelope shape,
which provides a broad and flat spectral distribution. In this way, we achieve a π rotation within 180 ns with a fidelity
exceeding 99.8% without initializing the nitrogen nuclear spin state.

The samples are kept at a temperature of 4 K in closed-cycle cryostats (Montana Instruments) to enable resonant
optical excitation of spin-dependent transitions. This enables fast single-shot readout and high-fidelity optical initial-
ization of the electronic spin state. The design of the electronics and optical setup is described in detail in previous
work [29],[33]. To initialize the electronic spin into | ↓〉, we apply resonant excitation on the |ms = ±1〉 ↔ |E′〉 optical
transition, achieving an initialization fidelity of more than 99.8% within 5 µs. Electronic spin readout is accomplished
by resonant excitation of the Ex(Ey) transition for the sample in setup A (B). To guarantee a high readout fidelity by
minimizing the spin mixing in the excited state, we chose samples with low transversal strain splitting and additionally
use d.c. Stark tuning by applying d.c. electric fields to the on-chip electrodes (Fig. 1c inset). The average strain
splitting during the experiment was 1.8 (2.3) GHz in sample A (B).

A high photon collection efficiency is a prerequisite for high fidelity optical single-shot readout and high-efficiency
entanglement. To overcome the limitation of total internal reflection of the emitted photons, we fabricate solid
immersion lenses in the diamond surface around preselected NVs (oriented along the 〈111〉 crystal direction) using a
focused ion beam. In addition, we deposit a single-layer aluminium oxide anti-reflection coating. We select devices
with a particularly high phonon-sideband (PSB, wavelength > 640 nm) photon collection efficiency in our home-built
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confocal microscope setups, which we measure to be (13 ± 2)%. Note that this value includes the 80% quantum
efficiency of the detectors. The zero-phonon line (ZPL) photon emission of each NV is separated from the PSB using
a dichroic long-pass and an additional tunable bandpass filter. Per optical excitation, we collect on average 2.9 · 10−4

(1.7 · 10−4) ZPL photons at location C after propagation through a single-mode fibre from location A (B). Measured
fiber losses are 6 dB from A to C and 9 dB from B to C. On setup A, we use adaptive optics to couple the ZPL
emission into the single-mode fiber, increasing the efficiency by about a factor of two, compared to using standard
optics (Section M). We use two polarisers at C to block unwanted reflections from the excitation pulse. To compensate
for polarization drift inside the fibers, an automated polarization control feedback loop adjusts two waveplates in front
of the fiber couplers at A and B.

Synchronization of the individual setups is achieved via separate glass fiber connections. Distances between locations
are determined using cartographic and altimetric data (Sections G, H).

One of the main challenges in performing the Bell experiment, is to maintain the required stability of all the involved
NV centres, instruments, lasers and detection optics over a week time-scale. In Section J we list the various checks,
optimisations and calibrations performed to achieve this goal.

B. Two-photon quantum interference (Figure 3b)

Measurement of photon coincidences in different output ports of a beam splitter has become a standard tool to
investigate the indistinguishability of single photons generated by different sources. To account for potentially unequal
efficiency of the sources, one can compare the case where the photons are indistinguishable to one where they are
made distinguishable on purpose. In our experimental system, using orthogonal polarization is prohibited by in-line
fibre polarisers. We instead program the experimental sequence such that setup A generates photons in an ‘early’
time window and setup B in a ‘late’ time window which is delayed with respect to the early one by 300 ns. Since
this is much longer than the optical lifetime of the NV centre, this allows us to clearly distinguish which of the setups
has emitted a given detected photon. During the measurement this distinguishable setting is alternated (every 3750
excitation pulses) with the indistinguishable setting, in which both setups produce photons that arrive at the same
time at the beamsplitter.

In the data analysis for the distinguishable setting the arrival times of the photons in the late time window (coming
from setup B) are shifted back by 300 ns in order to overlap them with those from setup A. In this way, we can present
the data in a more familiar way (Figure 3b). Note also that the data in Figure 3b is taken on a different NV pair than
the one used in the other experiments; the two pairs are very similar and are therefore expected to yield equivalent
results.

C. Model of the entangled state (Figures 3c and 4a)

We estimate the readout fidelities of NV A and B from the daily calibration measurements during the recording of the
XX and ZZ entanglement data (Figure 3c). We find: FA0 = 0.9536±0.0030, FA1 = 0.9940±0.0011, FB0 = 0.9390±0.0034,
FB1 = 0.9982± 0.0006. Using these values, we correct the spin-photon correlation data of Figure 3a for readout errors

[33], to obtain the residual errors made in the spin-photon correlation, eA,Bearly,late presented in the caption of Figure 3a.
To obtain an estimate for the fidelity of the generated entangled state, we model the state of the two NVs after a

successful heralding event by a density matrix of the following form (See SI of [33]):

ρ =
1

2

1− Fz 0 0 0
0 Fz −V 0
0 −V Fz 0
0 0 0 1− Fz

 . (1)

Here we set

Fz =
1

2

(
(1− eAearly)(1− eBlate) + (1− eBearly)(1− eAlate)

)
, (2)
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FIG. S1. Pulse sequence of the experiment. First, the spins at A (top) and B (bottom) are initialized by optical pumping. Then
we perform the entangling sequence, consisting of two microwave and two optical pulses, followed by a dynamical decoupling
sequence consisting of two microwave π-pulses that preserves the spin coherence. Finally, the readout basis is chosen and
implemented and the spins are read out.

V can be estimated from the measured interference contrast in Figure 3b, in combination with the expected 3%
reduction in phase coherence from the instability in excitation laser frequency (see section L below). The statistical
uncertainty in the estimated V is large because of the small number of events in the interference experiment. Our best
estimate is V ≈ 0.9 ∗ 0.97 = 0.873± 0.060. This yields an estimate for the state fidelity 〈Ψ−|ρ|Ψ−〉 = 0.92± 0.03. To
get the expected correlation values for Figure 3c, we numerically perform the corresponding final basis rotations Ua,b
on ρ and apply the expected readout-errors on the obtained density matrix. We use the same model to numerically
find the best basis settings for the Bell experiment and to calculate the expected correlators in Figure 4a. This results
in an expected S-parameter of 2.30± 0.07.

D. Dynamical decoupling sequence

The coherence of the NV centre spins is limited by the interaction with a bath of 13C nuclear spins, resulting in a
dephasing time T ∗2 of a few µs. To counteract this dephasing we apply a dynamical decoupling sequence that consists
of two microwave (MW) π-pulses with appropriate spacing. The full experimental pulse sequence is shown in Fig.
S1. To quantify the remaining detrimental effect of spin dephasing during the experiment, we omit the two optical
π-pulses used to generate the spin-photon entanglement and replace the last MW rotation by a π/2 pulse. Ideally,
this sequence should bring the spin to the state | ↓〉. The measured probability to end up in this state is above 99 %
showing that decoherence is efficiently mitigated.

E. Event-ready signal settings

The signal that heralds successful entanglement, recorded at location C, consists of one photon detection event in
an early time window and one in a late time window, each in a different output port of the beam splitter. We have
to define the start- and stop times of these 2× 2 windows. Ideally the windows only contain detection events due to
photons emitted by the NV centres at location A and B. The start time of the window should be late enough such
that unwanted reflections from the laser excitation pulse are filtered out, while the stop time should be early enough
such that the background count-rate is not dominating the detection probability.

We use the characterisation data of the ZZ and XX entanglement runs presented in Figure 3c of the main text to
decide on time-window settings for the event-ready signal, prior to starting the Bell experiment. Figure S2 illustrates
the method used to obtain a good window start-time and length, for each of the two channels, for the early time-
window. For the late time-window we use the same settings, but shifted by the fixed time between the two laser
excitation pulses in the entanglement protocol (250 ns).

Although the conservative settings thus decided on were used for the Bell test presented in the main text, the
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FIG. S2. Obtaining time-window settings for the event-ready signal. Red line: Histogram of the arrival times of the early
time-bin photons from both setups together, during the XX entanglement characterisation, measured at location C. We can
clearly distinguish the 2 ns, Gaussian shaped excitation pulse, followed by the exponential decaying emission from the NV’s,
and finally the constant background countrate. (The 1 ns plateau observed just before the laser pulse was caused by a reflection
on an optical element in the excitation path of setup A). From simulations we expect to obtain S > 2 only when the probability
to obtain a click from either NV is at least 10 times larger than the probability to obtain a spurious click from either the laser
pulse or the background. Using the independently measured shape of the laser pulse (blue line), and the background count-rate
fitted from the histogram after 120 ns (green line), we determine the start and stop of the filter window that satisfies this
criterion (upper insets). We find a time window of 2.55 − 55 ns after the centre of the laser-pulse. Before starting the Bell
experiment, we measured the arrival of the laser pulse for the (different) detectors used, for each channel (lower inset). From
the Gaussian fit, we find the centre of the laser pulse to be at 5423.80 ± 0.01 ns and 5423.15 ± 0.01 ns after the arrival of the
sync pulse, for detectors 0 and 1 respectively. We then fixed the window settings for heralding events at C, to be used in the
Bell test: the early window starts 5426.35 (5425.70) ns after the sync-pulse, and stops 5478.80 (5478.15) ns after the sync-pulse
for channel 0 (channel 1).

dataset recorded during the Bell experiment contains all the photon detection times at location C. This allows us to
investigate the effect of choosing different window-settings in post-processing. In Figure S3 we present the dependence
of the recorded Bell violation S, and number of Bell trials n, if we offset the start of the windows.

F. Bell violation for shorter readout duration

The data presented in the main text considered the maximum integration time allowed for the spin readout, given a
160 ns time for the generation of a random number, that still ensures the required locality conditions. By shortening
the integration time-window in post-processing, we can explore testing additional models beyond those included in our
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FIG. S3. CHSH parameter S and number of Bell trials n versus window start for the event-ready photon detections at location
C. The time-offset shown is with respect to the windows given in Figure S2. Thus, the dotted line at zero denotes the settings
as defined prior to starting the Bell experiment and used in the main text. Confidence region shown is one sigma, calculated
according to the conventional analysis (see main text). Shifting the window back in time, the relative fraction of heralding
events caused by clicks from the excitation laser reflections increases, thereby reducing the observed Bell violation.

.

null hypothesis. In particular, shortening the readout window while still observing a violation can test theories where
the inputs are already determined earlier by some unknown physics. We can shift the proposed determination of the
inputs further back in time, until the event-ready signal will no longer be space-like separated from the random input
at location A (see Figure 2a). At this point we have 690 ns for the generation of a random bit. Shortening the readout
to retain the required locality conditions given the earlier determined inputs, we find a violation of S = 2.39 ± 0.21,
which would correspond to a P -value of about 0.032 (0.054) for the conventional (complete) analysis. Note however
that our null hypothesis formulated before the test is based on using a 3700 ns readout duration, and further analysis
may be required to find the actual P -value for shorter readout durations. Alternatively, one can test theories that
predict a maximum speed of physical influences beyond the speed of light. Figure S4 shows the dependence of the S
parameter on the readout integration time.
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FIG. S4. CHSH parameter S versus readout integration time at locations A and B. Confidence region shown is one sigma,
calculated according to the conventional analysis (see main text).

G. Location and distances

The experiment comprises three locations, A, B and C, defined as the position of the three time-tagging devices used.
For locations A and B, the random number generators were located within 1 metre distance from the time-taggers,
and the diamond samples and local photon detectors within 2 metre distance. For location C, the beam-splitter and
photon detectors were located within 1 metre distance from the time-tagger. For each location X,Y and Z coordinates
are determined in the following way:

First, a reference point on the outer wall of the building containing the setup is chosen. Then, the XYZ coordinates
of the reference point are determined using the Large Scale Standard Map of The Netherlands (GBKN [34]), which
has an accuracy better than 0.3 m, combined with the current elevation map of the Netherlands (AHN) [35], with a
horizontal accuracy better than 0.5 m, and a vertical accuracy better then 0.1 m. Note that this accuracy is comparable
to what can be obtained with GPS aided measurements. Finally, the relative position of the setup to the reference
point is determined by manual distance measurements. The coordinates obtained in this manner are shown in Table S1.
By converting to 3-dimensional Cartesian coordinates, the relative distances between the three locations is calculated
with an uncertainty of less than ±1.5 m.

H. Synchronisation of the experimental setups

Direct communication between the three labs A, B and C is implemented by means of electronic-optical converters
(Highland Technology J720/J724/J730) and infrared optical fibres. To synchronize A and B during the Bell test, we
send and record a common start reference time before every entanglement attempt. Towards this end, a trigger signal
is sent by the arbitrary waveform generator (AWG) of B to both the time-tagger at C and the AWG at A. We calibrate
the static trigger delays between A-B and B-C by measuring the round trip delays, including AWG trigger delay and
local cable delays. The measured values are shown in Table S2.

As a cross-check, we use the independently measured trigger delay between A-C, and verify that the time delay
between the routes B-C and A-B-C matches the expected value. Any potential instability in the trigger delays during
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TABLE S1. Coordinates of the relevant locations. RD XY coordinates are Dutch RD coordinate system [36], Z coordi-
nates are NAP according to the NLGEO2004 definition [36]. Latitude, longitude and height are calculated WGS84, using
RDNAPTRANSTM(2008) transformations.

Location
RD X (m)

latitude (◦)

RD Y (m)

longitude (◦)

NAP height (m)

geometric height (m)

A
85441.0

(N 52.001358)

446371.7

(E 4.374233)

-1.75

(41.7)

B
85920.3

(N 51.990753)

445185.0

(E 4.381451)

-3.43

(40.0)

C
85490.9

(N 51.996959)

445881.5

(E 4.375059)

-3.41

(40.1)

the measurement would immediately be detected at the time-tagger at C by a shift in the arrival time of the laser
pulse-photons coming from A and B.

TABLE S2. Trigger delays between lab locations. For A-C, the AWG trigger delay is included. The given uncertainty values
assume a worst-case scenario, where all individual uncertainties add up linearly.

Trigger delays Time (ns) Uncertainty (ns)

A - B 9347 10

B - C 5526 8

A - C 3391 8

I. Random number generation

We use two accelerated laser phase diffusion quantum random number generators [37] (QRNGs) of identical con-
struction, designed and built at ICFO - The Institute of Photonic Sciences. The design, modelling, and testing of
these devices is described in detail in [30]. As described there, each QRNG continually generates partially random
“raw” bits at a rate of 200 MHz and performs a running parity calculation to output processed bits that aggregate
the randomness from all previous raw bits. At the time an output bit is taken for use as a measurement setting, only
the most recent k raw bits will still be space-like separated from the distant measurement station, and thus only these
k bits contribute local randomness. Based on the timing diagram shown in Figure 2, and subtracting delays in the
QRNG device (10 ns), internal delays of the sampling FPGA (30 ns), and cable delay to the time-taggers (10 ns), the
window for generation of space-like separated raw bits is 160 ns, and thus k = 32.

The predictability P of the output (ideally P = 1/2 for a perfect random bit source) is P ≤ 1
2 + τ (k), where τ (k)

bounds the excess predictability of the extracted bit. Due to the parity calculation, τ (k) decreases by roughly a factor
of ten for each increment of k, reaching τ (k) ≤ 10−5 for k ≥ 6. The model uses a 6σ bound on untrusted noise sources
and “fully paranoid” assumptions about how these noises combine [30].

While the derived predictability errors P for k = 32 are too small to be tested (verifying this would require an
impractical quantity of data), we can verify the validity of the predictions up to a given statistical significance. Prior
to the experiment the QRNGs were tested at k = 4, achieved by keeping only every fourth output bit. Note that
k = 4 output should, by the same model, have predictability errors ≤ 10−4. We applied the test suites NIST SP800-22
(1.5 Gb for each QRNG) and more extensively TestU01 Alphabit battery (210 Gb and 255 Gb), always finding results
consistent with ideal randomness. The largest files tested contained 233 ≈ 8 Gb and 234 ≈ 17 Gb, respectively. Using
the statistical uncertainty of a test of length 233, we obtain a 2σ error bound of P < 1

2 + 2 1

2
√

233
= 1

2 + 1.08 × 10−5.

We use this latter number as the predictability error τ in the P -value calculation, but note that this is conservative
as the theoretical model predicts that the k = 32 predictability error is smaller.
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During the experiment, the continued performance of the QRNGs was monitored in two ways: First, the regulated
reference voltage of the comparator after the pin photo-diode (see Figure 1 of [30]) was checked every 10 seconds
to exclude failure of the phase-locked loop, laser, interferometer, and photo-detector. Second, we recorded a subset
of 223 random bits, generated during the course of the Bell experiment, observing means of 1

2 + 5.8 × 10−5 and
1
2 + 1.3 × 10−4, consistent with the zero bias of a properly functioning device, considering the statistical uncertainty

of 1

2
√

223
= 1.7× 10−4.

J. Experimental control and stability

A typical experimental run proceeds as follows (see Figure S5): Both Adwin controllers perform a charge-resonance
check (CR check, see below). Adwin A sends a trigger signal to B when the CR-check is successful. When Adwin B is
also ready, it triggers AWG B, which in turn sends out an initial ‘sync-pulse’ signal, to trigger AWG A. AWG B waits
for the pre-calibrated A-B trigger delay (see Table S2), and then proceeds with 250 repetitions of the programmed
pulse sequence (Figure S1). Similarly, AWG A runs 250 repetitions of its sequence, as soon as it receives the initial
sync-pulse. When finished, both AWGs trigger their Adwin to start the next CR check. This cycle repeats itself until
the run is quit manually, or until the 45 minute run time is over.

A major challenge for our experiment is to keep a complex setup with many critical components stable over the
long integration time necessary to collect data, in order to ensure entanglement generation, spin rotations and spin
readout with a high fidelity that is required to observe a violation of the Bell inequality. To maintain stable operation
for a period of several weeks, we employ a combination of pre-selection, parameter feedback, periodic calibration
and optimisation measurements. Additionally, we monitor various key experimental indicators while running the Bell
experiment. If an indicator is outside of the pre-defined range, the current run is either stopped completely, or a signal
is recorded in the data to indicate that the setup is in an invalid state (see section K). Note that if this happens,
no data from previous trials or the current trial is discarded (only trials that were marked as invalid in advance are
affected).

Below we list all aspects of the setups that were actively stabilized and monitored, from short to long time-scale.

• Every 250 entanglement attempts (3.75 ms), we ensure that both NVs are negatively charged and on resonance
with the excitation lasers (CR-check, see [27]). We excite both the |ms = ±1〉 ↔ |E′〉 and the |ms = 0〉 ↔
|Ex(Ey)〉 optical transitions during 50 µs for setups A (B), while counting the number of detected photons. If no
photon is detected, the NV centre is assumed to be in its neutral charge state NV0 and a yellow laser, resonant
to the NV0 zero-phonon line, is applied to transfer the centre back to NV−. If, however, the number of photons
exceeds a pre-set threshold (between 30-40 counts), the experiment proceeds with the entanglement sequence.
Otherwise, the experiment repeats the check, until the threshold is met.

• An automated feedback loop stabilizes the NV excitation and emission frequency to the two red excitation lasers,
by tuning the d.c. electric field applied to the gold gate-electrodes. Before each CR check, the arrival of photon
detections are correlated with a 0.1 V, 50 µs period modulation of the gate electrode. This signal is averaged
over about 1000 CR checks (few seconds), and serves as the error signal for the feedback. In a similar manner
the laser frequency of the yellow laser is stabilized to the NV0 zero-phonon line, using a modulation of the AOM
driving frequency, while counting photon detections during the yellow repump phase.

• Every 10 seconds, both setups check proper functioning of a few key devices (AWG, wavemeters, laser stabilisa-
tion). If a check fails, the run is stopped and the setup waits for human intervention. Additionally, the control
program monitors:

– The average counts during the CR-check. If too low, we assume that the automated gate voltage feedback
has failed. A slow scan of the gate voltage, spanning a larger range than the feedback loop, is made to find
back the optimum point. During the scan, the recorded attempts are marked invalid. If still too low, or
too high, we assume that the NV dipole polarization has drifted. This requires the excitation polarisation
to be adjusted manually.
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– The average counts obtained during the yellow repump phase. If too low, we assume the automated yellow
laser frequency feedback has failed. A slow sweep of the yellow laser frequency is made, and the optimum
point is set. During the scan, the recorded attempts are marked invalid.

– The strain splitting, calculated from the current red laser frequencies. If this splitting is not within the
predefined range (1.5 - 1.8 GHz for NV A, 1.5 - 2.4 GHz for setup B), the subsequent data is marked invalid
until the strain splitting is within range again. This is typically achieved by manually tuning the readout
laser excitation frequency.

– The amount of unwanted reflections of the excitation light from the surface of the diamond. If this is
above a predefined threshold, the setup performs an automated scan of the waveplate angles in the ZPL
emission path (see Figure 1c) to improve the polarisation rejection of the excitation laser. The reflections
are measured for both setups independently by integrating a specific time-window of the arrival of photons
at location C. During the spin-initialisation part of the protocol, we identify parts in the histogram for
which only photons from one of the setups arrive. If the amount of reflections integrated in a time-window
corresponding to the arrival of the 2 nanosecond laser excitation pulse is higher than the integrated NV
emission, the subsequent attempts are marked as invalid.

• Every 5 minutes, we scan the spin-pumping laser, and set it to the point producing optimal CR-counts. The
data recorded during the scan is marked invalid.

• After each 45-minute run, the spatial positions of both objectives are optimized to ensure reproducible NV
excitation and photon collection. Furthermore, the laser powers are recalibrated.

• Every day, we perform a spin-photon correlation measurement as presented in Figure 3a. If the obtained corre-
lations show errors higher than expected, the microwave pulses for spin rotations are recalibrated. We also check
the performance of the final basis rotation (fast microwave switch), spin-coherence and spin readout. Finally, we
check the photon detection probabilities per optical excitation at location C, from both setups. If the detection
probability drops below 2.3 × 10−4 (1.4 × 10−4) for setup A (B), we re-align the detection optics of the ZPL
emission.
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FIG. S5. Control schematic of the experiment. The experiment is performed in three separate laboratories A, B and C (grey
dashed lines). The experiments at A and B use a real-time control unit (Jäger ADWIN ProII). Each repetition starts by
repeatedly checking whether the NV emission frequency is on resonance with the excitation lasers (CR). Once this check is
successful on setup A, its ADWIN passes a signal to setup B. When B has also successfully passed the test, ADWIN B triggers
AWG B, which in turn triggers AWG A. Both AWGs then output a synchronization signal (S) which is recorded by their
respective time taggers, whose signal is read out in blocks using a PC. The AWGs also output the fast control sequence that is
applied to the NV centres. Towards this end, they control the laser pulses and output two different microwave (MW) pulses that
perform the basis rotations in the Bell experiment. A microwave switch controls which of these two pulses is applied to the NV
centre, depending on the output of the QRNG. The value of the generated random bit (R0 or R1) is recorded by time-tagging
devices, alongside with the NV spin state readout signal (P) that is detected by single photon detectors (APD). At location C,
two APDs detect upcoming ZPL photons, whose arrival time is recorded by another time-tagger. Upon consecutive detection
of two photons, a programmable logic device (CPLD) outputs a signal that is used to mark these instances in the time-tagging
data (input E). This allows the PCs at A and B to directly discard experimental runs in which no entanglement was generated,
thus keeping the amount of stored data in reasonable bounds.
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K. Data recording and processing

The time-tagging devices at locations A and B record the following events:

• R0: a ‘zero’ was generated by the QRNG;

• R1: a ‘one’ was generated by the QRNG;

• P : a click was detected in the local phonon-side band emission;

• E: an entanglement heralding signal was received from the CPLD at location C;

• I: One of the benchmark indicators (section J) is outside of the pre-defined range, which causes the Adwin to
send a pulse to this channel every 250 entanglement attempts.

For each of these recorded events, the total number of sync-pulses (S) detected since the start of the run is saved, as
well as the time passed since the last sync-pulse. Every few hundred milliseconds, the recorded events are transferred
to the PC. During the experiment, about 2 megabyte of data is generated every second. To keep the size of the
generated data-set manageable, blocks of about 100000 events are saved to the hard drive only if an entanglement
heralding event (E) is present in that block.

The time-tagging device at location C records the following events:

• P0: a click was detected in output port 0 of the beam-splitter;

• P1: a click was detected in output port 1 of the beam-splitter;

• E: an entanglement heralding signal was received from the CPLD;

For each of these events, the current number of detected sync-pulses (S) since the start of the run is recorded, as
well as the time passed since the last sync-pulse and the total time passed since the start of the run. As the data-rate
is orders of magnitude lower here, all data is saved to the hard-drive.

For each run, we first extract the data of those attempts where entanglement was successfully generated, i.e. all
data that has the same sync-pulse number as an entanglement heralding signal E. We then determine if this is a valid
trial of the Bell experiment, determined by following criteria:

1. At location C, the recorded photon arrival times were within the bounds of the pre-defined filters (see section
E).

2. At location A and B, there was no invalid marker I recorded in one of the previous 250 attempts.

3. At location A and B, no local photon P was recorded in a time-window of 200 ns after the two optical excitations
for entanglement generation.

We emphasize that all events that determine whether or not an iteration is a valid Bell trial either are recorded in the
past light-cone of the random basis choice (2. and 3.) or are space-like separated from the random basis choice (1.) of
both A and B.

All rounds that fulfil the above criteria are a Bell trial, corresponding to t = 1, in the language of the statistical
analysis presented in Section N below. For these events, we extract the generated random numbers and readout results
of both setups A and B. For setup A, an event on channel R0 corresponds to a = 0, an event on R1 indicates a = 1.
The readout result x = +1 is assigned if within the readout integration time-window (as defined by the spacetime
analysis presented in the main text), there is at least one readout detection event (channel P ) recorded and x = −1
otherwise. For setup B, b and y are assigned analogous.
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FIG. S6. Schematic of the relative laser frequency stabilization. FM: Laser frequency modulation input. RF: Radiofrequency
source. BS: Beam splitter. FBS: Fibre beam splitter. PD: Photodiode. PFD: Phase-frequency detector. NV: Nitrogen-vacancy
centre. AOM: Acousto-optical modulator.

L. Stabilization of the excitation laser frequency

In our previous demonstration of entanglement between remote spins separated by 3 meters [29], both NV defects
were excited by the same laser, and the difference in optical path length from this laser to either of the NV centres
was much smaller than the coherence length of the laser. Therefore, the relative phase between early and late time-
bin of the photonic wavepacket could be described in a common rotating frame - that of the laser source. In the
present experiment, the large separation between the two setups requires excitation by two independent laser systems.
Retaining the common reference frame upon interference of the time-bin encoded photonic qubits requires that the
source lasers in both setups imprint the same phase difference between early and late time bin. To accomplish this, a
digital feedback loop is used to stabilize the frequency of one laser to that of the other.

Fig. S6 shows a schematic of this feedback loop. A small fraction of the excitation laser of setup A is frequency-
shifted by 135 MHz by an acousto-optical modulator. Using a fibre-based beamsplitter, this laser field is interfered
with a part of the light of laser B, which has been transmitted to laboratory A using an additional optical fibre of 1.6
km length.

To stabilize the relative frequency of the lasers, the interference signal is recorded using a fast amplified photodetector
(Thorlabs PDA10). The beat frequency is compared to the RF source signal that drives the AOM using a digital phase-
frequency detector (Menlo systems DXD200). The output of this device is applied to the current of laser diode A,
shifting its frequency and thus closing the feedback loop. The remaining 200 kHz (FWHM) relative frequency deviation
is an effect of the limited short-term stability of the used diode lasers (Toptica TA-SHG pro). An additional fibre
delay line of 1 km length reduces the effect of drifts in the frequency of laser B on the relative frequency difference of
the pulses that excite the NV centres.

In this configuration, we measured the fluctuations in the phase of the driving lasers using an analog phase detector
to be about 0.2π FWHM at the 250 ns time difference between the two excitation pulses. According to our calculations,
this should lead to a fidelity reduction of the XX correlations of about 3%. Further improvement would be possible by
reducing the laser linewidth, e.g. with an external reference cavity, or by decreasing the temporal separation between
the two time-bins.

M. Adaptive optics

We use a deformable mirror (Boston Micromachines) in the ZPL detection path of setup A to compensate for optical
aberrations due to fabrication imperfections of the solid immersion lens. To optimize the mirror surface, the NV centre
is off-resonantly excited by a 532-nm green laser and the collected fluorescence signal is optimized by step-wise varying
the mirror surface according to Zernike polynomials up to eleventh order [38]. The optimized shape of the mirror
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surface is represented in the inset of Figure S7. The increase in collection efficiency is characterized by comparing
saturation curves measured locally on the setup A for a flat and optimized mirror configuration, as shown on Figure
S7. The evolution of the ZPL count rates versus the excitation power Pe is fit to the function :

Asat
Pe

Pe + Psat
(3)

with the maximum count rate Asat and the saturation power Psat as free parameters. We find Asat = 18(1) kcts when
the mirror surface is flat, and Asat = 35(2) kcts after optimizing. Thus, for this particular solid immersion lens, the
use of adaptive optics allows for an increase in collection efficiency by a factor of 1.9(1).

FIG. S7. Saturation curve. The NV is excited with a green laser of varying power and the resulting emission into the zero-
phonon line is measured with a flat (blue data) and with an optimized (red data) mirror surface. From the fit curves (red and
blue lines), we deduce an increase in collection efficiency by a factor of 1.9. The inset shows a heat map of the actuator voltages,
where red (blue) rectangles denote positive (negative) excursion.

STATISTICAL ANALYSIS

Local hidden variable models (LHVM) predict concrete limitations on the statistics that can be observed in a Bell
experiment. These are typically phrased in terms of probabilities or expectation values. Naturally, however, in any
experiment we can only observe a finite number of events, and not probabilities. We thus need to quantify the statistical
evidence against an LHVM given a finite number of events. While we will focus on LHVM below, we remark that we
obtain the same statistical evidence against any theory of nature for which a bound as stated in Lemma 1 (in essence,
the CHSH inequality) holds for our experiment.

A common way to analyse statistics in Bell experiments is to compute the number of standard deviations that
separate the observed data from the best LHVM. However, this method has well known flaws [16],[21],[39],[40] (see [40]
for a detailed discussion). In particular, we would have to assume Gaussian statistics and independence between
subsequent attempts, allowing for the memory loophole. Fortunately, it is possible to rigorously analyze the statistics
even when allowing for memory as was first done by Gill [41]. Instead of the standard deviation, intuitively, one bounds
the probability of observing the experimental data, if nature was indeed governed by an LHVM. In the language of
hypothesis testing, this is known as the P -value, where the null hypothesis is that the experiment can be modelled as
an LHVM (see e.g. [42]). Informally, we thus have

P -value = max
LHVM

Pr[data at least as extreme as observed | experiment is governed by LHVM] . (4)

A small P -value can be interpreted as strong evidence against the null hypothesis, that is, that the experiment was
governed by an arbitrary LHVM. There is an extensive literature regarding methods for evaluating the P -value in
Bell experiments [16],[21],[42],[39],[40, 41, 43–51] and discussions regarding the analysis of concrete experiments and
loopholes [12],[52–58].
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Here, we focus on the case of the CHSH inequality as relevant for our experiment. For the simple case of the CHSH
inequality, it has been shown how to derive tight bounds on the P -value if the settings are chosen uniformly. Such
a bound was first informally derived in [16], and later rigorously developed by Bierhorst [39] whose approach we will
follow closely with two modifications: First, the analysis of [39] was done for uniform and independent choices of
measurement settings. We extend the approach of [39] to the case where A and B use a partially predictable RNG
[30]. Second, although our experiment can readily be seen to correspond to an event-ready scheme in the sense of Bell,
we formally include the event-ready procedure in our analysis.

N. How to compute the P -value

See Figure 1a; an event-ready Bell experiment consisted of m entanglement attempts. Let tm = (ti)
m
i=1 denote the

output signal of the “event-ready”-box, where the tag ti = 0 corresponds to a failure (no, not ready) event, and ti = 1
to a successful preparation (yes, ready) of the boxes A and B [59]. We will reserve the word trial for the attempts that
correspond to a successful preparation. Throughout, we use superscripts m to remind ourselves a sequence tm has
m elements. Let am = (ai)

m
i=1,b

m = (bi)
m
i=1 denote the inputs to boxes A and B in Figure 1a, where ai, bi ∈ {0, 1}.

Furthermore, let xm = (xi)
m
i=1,y

m = (yi)
m
i=1 with xi, yi ∈ {±1} denote the output of boxes A and B.

We denote by |tm| the number of ones in the binary sequence tm. Since we will use only the attempts where ti = 1,
let us define

n := |tm| =
m∑
i=1

ti (5)

to be the number of attempts in which ti = 1, where n is fixed as discussed below. Given the observed values
am,bm,xm,ym, and tm recorded in the experiment, we can compute the CHSH function

k :=
m∑
i=1

ti ·
(−1)aibixiyi + 1

2
. (6)

Note that k is the number of times that (−1)aibixiyi = 1. When viewing CHSH as a non-local game [13], k is thus
the number of times that Alice and Bob win the CHSH game. For large n, and uniform distribution of the inputs, we
have k ≈ n(S + 4)/8, where S is the value of the familiar CHSH correlator. We prove that

P -value ≤ Pn,k(Bξ) =
n∑
j=k

(
n

j

)
ξj(1− ξ)n−j , (7)

where Pn,k(Bξ) is the probability that n i.i.d. (independent and identically distributed) Bernoulli trials with probability

ξ = 3/4 + 3(τ + τ2) (8)

have at least k successes. Here τ denotes a partial predictability of the inputs given the history of the experiment,
defined in (11) and (12) below, where we take τ = max{τA, τB}. The value for τ used in the experiment is given in
Section I. We remark that n is fixed in this analysis, i.e., we stop the experiment if a certain number n of trials have
been collected, where n was decided independently of the data observed.

Even though we allowed that the LHVM could depend on previous attempts, thus making no extra assumptions
on the memory of the devices, the upper bound is the tail probability of an i.i.d. distribution. This is not at all
uncommon for sums of random variables, and there are many other examples where such a simplification occurs (see
for instance [60] and [61]).

O. Properties of the tested models

We introduce the sequence of random variables (Ai, Bi, Xi, Yi, Ti, Hi)
m
i=1 in correspondence with the concrete out-

comes as described above, where i is used to label the i-th element: let Am = (Ai)
m
i=1,B

m = (Bi)
m
i=1 denote the inputs
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to the boxes, Xm = (Xi)
m
i=1,Y

m = (Yi)
m
i=1 the outputs of the boxes, Tm = (Ti)

m
i=1 the sequence of event-ready signals,

and Hm = (Hi)
m
i=1 the histories of attempts previous to the i-th attempt. We make no assumptions regarding the

statistics of the event-ready procedure, which may be under full control of the LHVM, and can depend arbitrarily on
the history of the experiment. The random variable Hi models the state of the experiment prior to the measurement.
As such, Hi includes any hidden variables, usually denoted using the λ symbol [13]. It also includes the history of all
possible configurations of inputs and outputs of the prior attempts (Aj , Bj , Xj , Yj , Tj)

i−1
j=1.

We consider all models that restrict the random variables in the following way:

1. Local randomness generation. Conditioned on the history of the experiment the inputs Ai, Bi are independent
of each other

∀i, Ai |= Bi | Hi , (9)

and of the output of the event-ready signal

∀i, Ai |= Ti, Bi |= Ti | Hi . (10)

We allow Ai and Bi to be partially predictable given the history of the experiment:

∀(i, ai, hi),Pr (Ai = ai|Hi = hi) ≤
1

2
+ τA , (11)

∀(i, bi, hi),Pr (Bi = bi|Hi = hi) ≤
1

2
+ τB . (12)

2. Locality. The outputs xi and yi only depend on the local input settings and history: they are independent of each
other and of the input setting at the other side, conditioned on the previous history and the current event-ready
signal:

∀i, (Xi, Ai) |= (Yi, Bi)|Hi, Ti . (13)

3. Sequentiality of the experiments. Every one of the m attempts takes place sequentially such that any possible
signalling between different attempts beyond the previous conditions is prevented [16].

Except for these conditions the variables might be correlated in any possible way.
Given the experimental setup and sequence as described in the main text and Figures 1 and 2, all local realist

theories that predict that the number generators produce a free random bit in a timely manner, and that the output
is final once recorded in the electronics, satisfy these restrictions [1].

P. Proof outline

Let us first provide a sketch of the main steps before giving detailed proofs, where we will use the notation and

definitions introduced above. Let ∆a,b,x,y,t
i be an indicator function

∆a,b,x,y,t
i = 1{Ai = a,Bi = b,Xi = x, Yi = y, Ti = t} . (14)

That is, 1{Ai = a,Bi = b,Xi = x, Yi = y, Ti = t} is itself a random variable that is a function of the random variables
Ai,Bi,Xi,Yi and Ti. It takes on the value 1 if all equalities are satisfied for a particular choice of a, b, x, y, t, and 0
otherwise. Next, we define the Bell random variable associated with the i-th attempt as

Ci =
∑

a,b,x,y,t

∆a,b,x,y,t
i · t · (−1)abxy + 1

2
. (15)
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The concrete instance of the i-th attempt we denote by

ci = ci(ai, bi, xi, yi, ti) = ti ·
(−1)aibixiyi + 1

2
, (16)

which is a function that can be computed using inputs and outputs of the three boxes in Figure 1a, in the i-th attempt.
As indicated, we will often drop the dependence on (ai, bi, xi, yi, ti) by writing ci in order to lighten the notation. The
term concrete instance means that ci can be computed from the data observed in the experiment.

The main steps of the arguments are as follows. First we need to introduce some notation. We define the random
variable

Zm =
m∑
i=1

Ci . (17)

Note that k = zm is a concrete instance of Zm. As above, we will often drop the dependence on Am,Bm, Xm, Ym,
Tm and simply write Zm.

The P -value is the probability that an any LHVM can produce a result at least as extreme as the data observed,
that is, that it produces a value equal or larger than k over n trials, i.e., Zm ≥ k. Since we run the experiment until
a particular number of trials n are recorded, and the LHVM has control over the event-ready signal, this means that
we also have to consider the probability that the LHVM produces such k for a larger (or smaller) number of attempts
than actually observed in the experiment. To formally model this, note that stopping when n trials (i.e., successful
heralding attempts) have occurred is equivalent to saying we ignore all future attempts. That is, our implementation
sets tj = 0 for all j > `, where ` denotes the attempt in which we observed the n-th trial. Nevertheless, the total
number of attempts m ≥ n that an LHVM can use to produce at least k in n trials is allowed to be arbitrarily large.
Below we will establish the following upper bound on the P -value in a series of steps, where the maximization is taken
over all possible LHVM (including m). The first equality (18) is just the definition of the P -value.

P -value = max
LHVM

∑
tm∈{0,1}m
|tm|=n

Pr (Tm = tm) Pr (Zm ≥ k | Tm = tm) (18)

= max
LHVM

∑
tm∈{0,1}m
|tm|=n

Pr (Tm = tm) Pr (number of 1’s in (C1 · t1, . . . , Cm · tm) ≥ k | Tm = tm) (19)

≤ Pn,k(Bξ) . (20)

Recall that n is fixed in this analysis, i.e., we stop the experiment [62], if a certain number n of trials have been
collected, where n has to be decided independently of the data observed. Note that we cannot stop the experiment
if the P -value drops below a desired limit, or even perform the experiment multiple times until reaching a desired
P -value. Otherwise, the P -value would have to be computed in a completely different form.

Viewing CHSH from the perspective of non-local games makes our proof very intuitive: k can be understood as the
number of times that Alice and Bob win the CHSH game using a local-hidden variable strategy [13]. The P -value is
then the probability that they win the game at least k times if we perform an experiment in which we wait until n
successful heralding attempts have occurred, maximized over all possible local-hidden variable strategies. In our proof,
we first bound the probability that they win in round (attempt) i, conditioned on the entire history leading up to this
round, by a number ξ. Finally, we bound the probability that they win at least k times on n rounds by an inductive
argument: intuitively, we peel off round by round of the game, where at each peel we apply the analysis for round i.
In other words, the high-level overview of the steps to obtain the bound (20) from (19) is as follows:

Step 1: Bounding the probability of one attempt given the past history.
The first step is to bound Pr (Ci = 1 | Hi = hi, Ti = ti) for attempt i, for any possible history hi and event-ready
output ti. Intuitively, this can be understood as a derivation of the CHSH inequality, using the properties of local
randomness generation, locality and sequentiality. We first expand the desired term using the definition of Ci in (15)
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as

Pr (Ci = 1|Hi = hi, Ti = ti) =
∑

z∈{−1,1}
a,b∈{0,1}

(a,b)6=(1,1)

Pr (Xi = Yi = z,Ai = a,Bi = b|Hi = hi, Ti = ti)

+
∑

z∈{−1,1}

Pr (−Xi = Yi = z,Ai = 1, Bi = 1|Hi = hi, Ti = ti) . (21)

The crucial step is now to use the condition of local randomness generation and locality of measurement outcomes to
break these probabilities into simpler terms

Pr
(
Xi = x, Yi = y,Ai = a,Bi = b|Hi = hi, Ti = ti

)
=

Pr (Ai = a|Hi = hi, Ti = ti) Pr (Bi = b|Hi = hi, Ti = ti)

· Pr (Xi = x|Ai = a,Hi = hi, Ti = ti) Pr (Yi = y|Bi = b,Hi = hi, Ti = ti) .

Plugging this decomposition into (21) and solving the resulting optimization problem yields

Pr (Ci = 1|Hi = hi, Ti = ti) ≤ ξ , (22)

for ξ = 3/4 + 3(τ + τ2).

Step 2: Replacing the history with the recorded values of Ci−1 and Ti. Above, we allowed for arbitrary histories hi
that include any state of the experiment. The next step is to replace the conditioning on the history by a conditioning
on the recorded sequence up to the i-th attempt Ci−1 = (Ci)

i−1
j=1, and the event-ready output Ti = (Tj)

i
j=1, instead

of the entire history, giving us

Pr
(
Ci = 1|Ti = ti,Ci−1 = ci−1

)
≤ ξ . (23)

This is a consequence of (22) together with the law of total probability, which in its discrete form says that the
probability of any event Z = z can be written as Pr (Z = z) =

∑
z′ Pr (Z ′ = z′) Pr (Z = z | Z ′ = z′) for any distribution

Pr (Z ′ = z′). We remark that steps 2 and 3 only use (22), and do not depend on the form of the null hypothesis.

Step 3: Going from one to many attempts The final step is to use this bound, to bound the P -value for m attempts
with |tm| = n, where m can be arbitrarily large. This follows from an inductive argument as in Bierhorst [39]. When
performing the induction step, we bound the next step using (23).

Q. Technical details

Step 1: Bounding the probability of one attempt given the past history (CHSH inequality).

First, in Lemma 1, we prove that if the experiment is ruled by an LHVM, then the probability that Ci takes the value
one given the state of the experiment is bounded from above by some ξ for any possible history hi and event-ready
attempt ti. This bound is basically a rederivation of CHSH with imperfect random number generators.

Lemma 1. Let m ∈ N, and let the sequence (Am,Bm,Xm,Ym,Hm,Tm) be defined as in Section O. Suppose that
the null hypothesis holds, i.e., nature is governed by an LHVM. Given that the predictability of the RNG is τ , we have
for all i ∈ N with i ≤ m, any possible history Hi = hi of the experiment, and all Ti = ti that the probability of Ci = 1
is upper bounded by

Pr (Ci = 1|Hi = hi, Ti = ti) ≤ ξ , (24)

where ξ = 3/4 + 3(τ + τ2).
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Proof. We first expand the desired term using the definition of Ci as

Pr (Ci = 1|Hi = hi, Ti = ti) =
∑

z∈{−1,1}
a,b∈{0,1}

(a,b)6=(1,1)

Pr (Xi = Yi = z,Ai = a,Bi = b|Hi = hi, Ti = ti)

+
∑

z∈{−1,1}

Pr (−Xi = Yi = z,Ai = 1, Bi = 1|Hi = hi, Ti = ti) . (25)

We can break these probabilities into simpler terms

Pr
(
Xi = x, Yi = y,Ai = a,Bi = b|Hi = hi, Ti = ti

)
= Pr (Xi = x,Ai = a|Hi = hi, Ti = ti)

· Pr (Yi = y,Bi = b|Hi = hi, Ti = ti) (26)

= Pr (Ai = a|Hi = hi, Ti = ti) Pr (Xi = x|Ai = a,Hi = hi, Ti = ti)

· Pr (Bi = b|Hi = hi, Ti = ti) Pr (Yi = y|Bi = b,Hi = hi, Ti = ti) . (27)

The first equality followed by the locality condition, the second one simply by the definition of conditional probability.
With this decomposition, we can express (25) as

Pr (Ci = 1|Hi = hi, Ti = Ti) =
∑

a,b∈{0,1}
(a,b)6=(1,1)

αaβb (χaγb + (1− χa)(1− γb))

+ α1β1 (χ1(1− γ1) + (1− χ1)γ1) (28)

=
∑

a,b∈{0,1}

αaβbfa,b (29)

≤
(

1

2
+ τ

)2 ∑
a,b∈{0,1}

fa,b , (30)

where we have used the shorthands

χa := Pr (Xi = 1|Ai = a,Hi = hi, Ti = ti) , (31)

γb := Pr (Yi = 1|Bi = b,Hi = hi, Ti = ti) , (32)

αa := Pr (Ai = a|Hi = hi, Ti = ti) , (33)

βb′ := Pr (Bi = b|Hi = hi, Ti = ti) , (34)

fa,b :=

{
χaγb + (1− χa)(1− γb) if (a, b) 6= (1, 1) ,

χa(1− γb) + (1− χa)γb otherwise.
(35)

It thus remains to bound the sum of fa,b. Note that we can write∑
a,b∈{0,1}

fa,b = (χ0γ0 + (1− χ0)(1− γ0)) + (χ0γ1 + (1− χ0)(1− γ1))

+ (χ1γ0 + (1− χ1)(1− γ0)) + (χ1(1− γ1) + (1− χ1)γ1) (36)

= χ0 (γ0 + γ1) + (1− χ0) (2− γ0 − γ1)

+ χ1 (γ0 + 1− γ1) + (1− χ1) (1− γ0 + γ1) . (37)

Since (37) is a sum of two convex combinations, it must take its maximum value at one of the extreme points, that is
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with χ0 ∈ {0, 1} and χ1 ∈ {0, 1}. We can thus consider all four combinations of values for χ0 and χ1 given by

∑
a,b∈{0,1}

fa,b =


3− 2γ0 if (χ0, χ1) = (0, 0) ,

3− 2γ1 if (χ0, χ1) = (0, 1) ,

1 + 2γ1 if (χ0, χ1) = (1, 0) ,

1 + 2γ0 if (χ0, χ1) = (1, 1) .

(38)

Since 0 ≤ γ0, γ1 ≤ 1, we have in all cases that the sum is upper bounded by 3. Using (30) we thus have

Pr (Ci = 1|Hi = hi, Ti = ti) ≤
(

1

2
+ τ

)2

· 3 =
3

4
+ 3

(
τ + τ2

)
. (39)

Step 2: Replacing the history with the recorded values of Ci−1 and Ti.

Now, building on top of Lemma 1, we prove that the probability that Ci takes the value one given not the entire
history, but only the event-ready attempts and the prior sequence, is bounded from above by some ξ. While the two
statements look very similar, the main difference is that while in Lemma 1 we condition on the entire history Hi = hi,
in Lemma 2 we condition on the event-ready successes Ti = ti, and the prior sequence Ci−1 = (Cj)

i−1
j=1 of data that

can actually be observed [63]. Although both statements are similar, it is Lemma 2 that we can easily use in the proof
of Lemma 3 to bound the P -value by the survival function of a Binomial.

We will need Proposition 1, which is a basic probabilistic statement necessary for Lemma 2. In essence, it is just
the measure theoretic version of

Pr (A = a) =
∑
b

Pr (A = a|B = b) Pr (B = b) . (40)

We state it for completeness, with the purpose of having the derivation of the bound on the P -value as self contained
as possible.

Proposition 1 (Law of total probability). Let A,B be two random variables on the same probability space Ω with
E(|A|) <∞. Then the probability of an event A = a admits the following integral form

Pr (A = a) =

∫
Ω

Pr (A = a|B = b) dµ(b) , (41)

for some measure dµ on Ω.

Lemma 2. Let m,n ∈ N and let the sequence (Am,Bm,Xm,Ym,Hm,Tm) be defined as in Section O. Suppose that
the null hypothesis holds, i.e., nature is governed by an LHVM. Given that the predictability of the RNG is τ , we have
that for all i ∈ N with m ≥ n and i ≤ m, and all sequences ti ∈ {0, 1}i and ci−1 ∈ {0, 1}i−1, that the probability that
Ci takes the value one satisfies

Pr
(
Ci = 1|Ti = ti,Ci−1 = ci−1

)
≤ ξ , (42)

where ξ = 3/4 + 3(τ + τ2).

Proof. The following equalities hold from the definition of conditional probability and Proposition 1

Pr
(
Ci = 1|Ti = ti,Ci−1 = ci−1

)
Pr
(
Ti = ti,Ci−1 = ci−1

)
= Pr

(
Ci = 1,Ti = ti,Ci−1 = ci−1

)
(43)

=

∫
Ω

Pr
(
Ci = 1,Ti = ti,Ci−1 = ci−1|Hi = hi

)
dµ(hi) . (44)
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Let us bound the integrand in the previous equation. We have

Pr
(
Ci = 1,Ti = ti,Ci−1 = ci−1|Hi = hi

)
= Pr (Ci = 1, Ti = ti|Hi = hi) · δ (45)

= Pr (Ci = 1|Hi = hi, Ti = ti) Pr (Ti = ti|Hi = hi) · δ (46)

≤ ξ Pr (Ti = ti|Hi = hi) · δ (47)

≤ ξ Pr
(
Ti = ti,Ci−1 = ci−1|Hi = hi

)
, (48)

where δ is a shorthand for

δ = Pr
(
1{Ti−1 = ti−1,Ci−1 = ci−1} = 1|Hi = hi

)
. (49)

The first equality (45) follows from the fact that ti−1 and ci−1 are events either compatible or incompatible with hi,
the second one (46) from the definition of conditional probability, and the inequality (47) from Lemma 1. We now
introduce (48) back into (44) to obtain

Pr
(
Ci = 1|Ti = ti,Ci−1 = ci−1

)
Pr
(
Ti = ti,Ci−1 = ci−1

)
≤ ξ

∫
Ω

Pr
(
Ti = ti,Ci−1 = ci−1|Hi = hi

)
dµ(hi) (50)

= ξ Pr
(
Ti = ti,Ci−1 = ci−1

)
, (51)

where the equality (51) follows from Proposition 1. We complete the proof by cancelling the terms
Pr
(
Ti = ti,Ci−1 = ci−1

)
on the right and left side of the equation above.

Step 3: Going from one to many attempts

We end this technical derivation with Lemma 3, which allows us to put together the statements above: instead of
making a statement just about the next attempt, we now make a statement about all attempts together. Our proof is
an easy generalization of Proposition 4 in [39] to a setting with imperfect RNGs and the event-ready procedure. What
makes this analysis more complicated is the formal treatment of the event-ready procedure. Due to this procedure,
we deal with long sequences of attempts, while the computation of the CHSH function actually only depends on the
(possibly) much shorter sequence of trials, i.e., the attempts where tj = 1. It is intuitive that only the trials are
relevant for computing the P -value, but to make this precise let us spell out the relation between the two sequences.

Of relevance in the long sequence of m attempts, is the sequence Cm = (C1, . . . , Cm) together with the sequence of
event-ready attempts Tm = (T1, . . . , Tm). Recall that the latter tells us which elements of Cm are of interest, i.e., can
at all be non-zero. To reason about the shorter sequence of n trials, let us first introduce some notation. Our goal
will be to define a series of random variables Dn = (D1, . . . , Dn) for the short sequence of trials, where intuitively Dj

corresponds to the random variable taking value one when the j-th event-ready success also results in Ci = 1 for any
corresponding i. In other words, we will define Dn in such a way that instead of worrying about the number of 1’s in
(C1T1, . . . , CmTm) we will be concerned with the number of 1’s in (D1, . . . , Dn).

To define this formally, we need a way to map the j-th trial from the short sequence of trials, to the index i in the
longer sequence of attempts. Note that for a particular event-ready sequence tm = (t1, . . . , tm) ∈ Tm, the j-the trial
is mapped to the smallest index i, such that the subsequence ti = (t1, . . . , ti) of tm has exactly j 1’s. Of course, there
are many sequences ti ∈ Ti that have precisely j 1’s, where the last element is also a 1, and for all such strings the
mapping from j in the sequence of trials, to the index i in the sequence of attempts is the same. Let us thus define

Tj→i =
{
tm = (t1, . . . , tm) ∈ {0, 1}m | |tm| = n and ti = (t1, . . . , ti) satisfies |ti| = j and |ti−1| = j − 1

}
, (52)

to be the set of all event-ready sequences tm for which j is mapped to one particular i. By summing over all possible
indices i in the long sequence of attempts, we can thus formally define

Dj =
m∑
i=1

∑
tm∈Tj→i

∑
cm∈{0,1}m

1 {Tm = tm,Cm = cm} · Ci , (53)
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where 1 is as before the indicator function. In terms of probabilities, this means that the probability that the j-th
trial gives Dj = 1 is given by

Pr (Dj = 1) =
m∑
i=1

 ∑
tm∈Tj→i

∑
cm∈{0,1}m

ci=1

Pr (Tm = tm,Cm = cm)

 . (54)

We can thus express the P -value as

P -value =
∑

tm∈Tm

|tm|=n

Pr (Tm = tm) Pr (number of 1’s in (C1 · t1, . . . , Cm . . . tm) ≥ k | Tm = tm) (55)

= Pr (number of 1’s in (D1, . . . , Dn) ≥ k) (56)

= Pr

 n∑
j=1

Dj ≥ k

 . (57)

Before delving into the proof below, it will be convenient to simplify (54). Note that for a fixed i, the term in
brackets in (54) contains a sum over all possible ti+1, . . . , tm and ci+1, . . . , cm. This means we can use the law of total
probability to shorten the sum by expressing (54) in terms of the marginal distributions as

Pr (Dj = 1) =

m∑
i=1

∑
ti∈T i

j→i

∑
ci−1∈{0,1}i−1

Pr
(
Ti = ti,Ci−1 = ci−1, Ci = 1

)
, (58)

where

T ij→i =
{
ti = (t1, . . . , ti) ∈ {0, 1}i | ∃t̂m = (t̂1, . . . , t̂m) ∈ Tj→i such that (t̂1, . . . , t̂i) = (t1, . . . , ti)

}
. (59)

After having formally established the relation between the sequence of trials and the sequence of attempts, we are now
ready for the final proof. Since we can now argue in terms of the sequence of trials (D1, . . . , Dn) this is analogous
to [39][Proposition 4], which we will spell out for completeness.

Lemma 3. Let m,n, k ∈ N and let the sequence (Am,Bm,Xm,Ym,Hm,Tm) be defined as in Section O. Suppose
that the null hypothesis holds, i.e., nature is governed by an LHVM. Given that the predictability of the RNG is τ , we
have that for all m ≥ n, the probability that at least k of the (Dj)

n
j=1 take the value one is upper bounded by

P -value = Pr

 n∑
j=1

Dj ≥ k

 ≤ Pn,k(Bξ) , (60)

where Pn,k(Bξ) denotes the probability that n Bernoullis with probability ξ = 3/4 + 3(τ + τ2) yield at least k 1’s, and
Pn,k(Bξ) = 0 if k > n.

Proof. Let us define the shorthand

Pn,k(D) = Pr

 n∑
j=1

Dj ≥ k

 . (61)

The probability that we see at least zero 1’s (k = 0) obeys

Pn,0 (D) = 1 (62)

= Pn,0(Bξ) (63)
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for all n and m ≥ n.

We now prove the statement for k > 0 by induction on n. For n = 1, we need only to verify that (60) holds for
k = 1 (we already dealt with k = 0). We have

P1,1 (D) = Pr (D1 ≥ 1) = Pr (D1 = 1) (64)

=
m∑
i=1

∑
ti∈T i

1→i

∑
ci−1∈{0,1}i−1

Pr
(
Ti = ti,Ci−1 = ci−1, Ci = 1

)
(65)

=
m∑
i=1

∑
ti∈T i

1→i

∑
ci−1∈{0,1}i−1

Pr
(
Ci = 1|Ci−1 = ci−1,Ti = ti

)
Pr
(
Ci−1 = ci−1,Ti = ti

)
(66)

≤ ξ
m∑
i=1

∑
ti∈T i

1→i

∑
ci−1∈{0,1}i−1

Pr
(
Ci−1 = ci−1,Tj = tj

)
(67)

= ξ = P1,1(Bξ) , (68)

where the first equality (65) is just (58), the second equality (66) the definition of conditional probability, the inequal-
ity (67) follows from Lemma 2, and the final equality (68) from the definition of the sets Tj→i and the fact the sum of
all probabilities is 1.

In order to prove the induction step below, let us first express the probability of having at least k 1’s on trial n as
the sum of the probability of having at least k on trial n− 1, plus the probability of having exactly k − 1 1’s on trial
n− 1 and a one on the n-th trial

Pn,k (D) = Pr

 n∑
j=1

Dj ≥ k

 (69)

= Pr

n−1∑
j=1

Dj ≥ k

+ Pr

n−1∑
j=1

Dj = k − 1, Dn = 1

 (70)

= Pn−1,k (D) + Pr

n−1∑
j=1

Dj = k − 1, Dn = 1

 . (71)

We now upper bound the second term in (71), where we will use the shorthand |ci−1 · ti−1| = |(c1t1, . . . , citi)| =
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j=1 citi.

Pr

n−1∑
j=1

Dj = k − 1, Dn = 1

 (72)

=
m∑
i=1

∑
ti∈T i

n−1→i

∑
ci−1∈{0,1}i−1

|ci−1·ti−1|=k−1

Pr
(
Ti = ti,Ci−1 = ci−1, Ci = 1

)
(73)

=
m∑
i=1

∑
ti∈T i

n−1→i

∑
ci−1∈{0,1}i−1

|ci−1·ti−1|=k−1

Pr
(
Ci = 1|Ti = ti,Ci−1 = ci−1

)
Pr
(
Ti = ti,Ci−1 = ci−1

)
(74)

≤ ξ
m∑
i=1

∑
ti∈T i

n−1→i

∑
ci−1∈{0,1}i−1

|ci−1·ti−1|=k−1

Pr
(
Ti = ti,Ci−1 = ci−1

)
(75)

= ξ Pr

n−1∑
j=1

Dj = k − 1

 (76)

= ξ (Pn−1,k−1(D)− Pn−1,k(D)) . (77)

Equality (74) follows by the definition of conditional probability, inequality (75) from Lemma 2, equality (76) from (54),
and the last equality (77) because the sum over all vectors having exactly k− 1 1’s equals the probability of having at
least k − 1 1’s, minus the probability of having at least k.

Recall that Pn,k(Bξ) stands for the probability of having at least k successes over n Bernoullis with probability ξ.
Before proving the induction step, we need to rewrite Pn,k(Bξ) as follows

Pn,k(Bξ) = Pr (at least k successes over n− 1 Bernoullis)

+ Pr (exactly k − 1 successes over n− 1 Bernoullis and success on the n-th ) (78)

= Pn−1,k(Bξ)
+ Pr (exactly k − 1 successes over n− 1 Bernoullis and success on the n-th ) (79)

= Pn−1,k(Bξ)
+ Pr (exactly k − 1 successes over n− 1 Bernoullis) Pr (success on the n-th trial) (80)

= Pn−1,k(Bξ) + (Pn−1,k−1(Bξ)− Pn−1,k(Bξ)) Pr (success on the n-th trial) (81)

= Pn−1,k(Bξ) + ξ (Pn−1,k−1(Bξ)− Pn−1,k(Bξ)) . (82)

Now we prove the induction step. Consider some arbitrary n > 1 and consider the induction hypothesis that ∀m ≥ n
and ∀k′ ≤ n , Pn−1,k′ (D) ≤ Pn,k′(Bξ). The following chain of inequalities hold:

Pn,k (D) = Pn−1,k (D) + ξ (Pn−1,k−1(D)− Pn−1,k(D)) (83)

= (1− ξ) Pn−1,k (D) + ξ Pn−1,k−1(D) (84)

≤ (1− ξ) Pn−1,k (Bξ) + ξ Pn−1,k−1(Bξ) (85)

= Pn,k(Bξ) . (86)

The first (83) and second (84) equalities follow after plugging (77) back into (71) and rearranging. The inequality (85)
follows from the induction hypothesis. The last equality (86) follows from rearranging (82) and completes the induction
step.
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R. Discussion

We remark that, assuming zero bias, our bound is optimal when computing the CHSH function from the data. That
is, for CHSH the bound can in fact be attained by a LHVM, showing that a conventional analysis (see Figure 4, main
text) is overly optimistic for small n. To see that the bound is tight, it is again convenient to adopt the perspective
of non-local games: To make the bound tight, it is enough to saturate Lemma 1. This can be done by the usual
classical strategy for Alice and Bob in CHSH. Of course, one could compute functions other than CHSH from our data
set, which may lead to an even lower P -value. We note, however, that we cannot retroactively search for the best
function to compute from our data based on the data already collected, since this would need a different analysis for
the P -value. Very intuitively, this is so because an LHVM could take advantage of the fact that we were to perform
such an optimization retroactively.

From our proof it is clear that Lemma 2 and 3 did not make use of the conditions of an LHVM. In both cases, we
just required Lemma 1 (the CHSH inequality) to hold. This means that any theory that predicts that Lemma 1 holds
for our experiment is excluded with the same P -value. It also makes it apparent how one can extend the analysis
to refute models that are more powerful than an LHVM. For example, Hall [64] defined and quantified interesting
relaxations of an LHVM, with reduced free will, or where some amount of signalling is allowed. It is straightforward
to adapt the analysis of [64] to Lemma 1 to obtain a P -value for such extended models. Our analysis is thus robust,
in the sense that allowing slightly more power to the model also only results in a slight increase in the P -value. To
see why the P -value increases, taking the perspective of a non-local game is again very instructive: if Alice and Bob
are allowed more powerful strategies than an LHVM, then the probability that they will produce at least k wins in n
trials increases.

S. Relation to the CHSH correlator

Our bound on the P -value depends directly on the number of successes k over n Bernoullis. For completeness, let
us explain how this is linked to the average CHSH value, which may be more familiar from the literature. Since our
objective is only to illustrate this link and give some intuition on the P values, we assume, only from here and until
the end of this section, perfect RNGs. We denote by 〈XY 〉ab the average of the random variable XY when the settings
are A = a,B = b

〈XY 〉ab = Pr (X = Y |A = a,B = b)− Pr (X 6= Y |A = a,B = b) (87)

=

{
2Pr (C = 1|A = a,B = b)− 1 if (a, b) 6= (1, 1) ,

1− 2Pr (C = 1|A = a,B = b) otherwise.
(88)

Let us denote by S the average CHSH value

S = 〈CHSH〉 = 〈XY 〉00 + 〈XY 〉01 + 〈XY 〉10 − 〈XY 〉11 . (89)

Now, we can link S with Pr (C = 1) as

S + 4

8
=

2
∑
a,b Pr (C = 1|A = a,B = b)

8
(90)

=
∑
a,b

1

4
Pr (C = 1|A = a,B = b) (91)

= Pr (C = 1) . (92)

That is, we can map the average CHSH value S to the probability that C takes the value one. It directly follows
that the known CHSH upper bound S ≤ 2 corresponds with Pr (C = 1) ≤ 0.75, which is the upper bound that we
obtain if we assume perfect RNGs (τ = 0) in Lemma 1 and Lemma 2. In the same way we can map the observed
CHSH violation to the number of successes. Let na,b denote the number of trials with setting (a, b), n=

a,b the number
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of successes associated with setting (a, b) and S̃ the observed CHSH value:

S̃ =
∑
a,b

n=
a,b

na,b
. (93)

For large n, the following equalities hold approximately

n · S̃ + 4

8
= n ·

∑
a,b

n=
a,b

na,b
+ 4

8
(94)

= n ·

∑
a,b

(
2
n=
a,b

na,b
− 1
)

+ 4

8
(95)

≈
∑
a,b

n=
a,b (96)

= k . (97)

The approximation holds since for large n the number of trials at each setting should be approximately n/4 and in
consequence n/na,b ≈ 4.
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