98 research outputs found

    Searching for serial refreshing in working memory:Using response times to track the content of the focus of attention over time

    Get PDF
    One popular idea is that, to support maintenance of a set of elements over brief periods of time, the focus of attention rotates among the different elements thereby serially refreshing the content of Working Memory (WM). In the research reported here, probe letters were presented between to-be-remembered letters. Response times to these probes were used to infer the status of the different items in WM. If the focus of attention cycles from one item to the next, its content should be different at different points in time and this should be reflected in a change in the response time patterns over time. Across a set of four experiments, we demonstrate a striking pattern of invariance in the response time patterns over time, suggesting that either the content of the focus of attention did not change over time or that response times cannot be used to infer the content of the focus of attention. We discuss how this pattern constrains models of WM, attention, and human information processing

    Resource-sharing in multiple component working memory

    Get PDF
    Working memory research often focuses on measuring the capacity of the system and how it relates to other cognitive abilities. However, research into the structure of working memory is less concerned with an overall capacity measure but rather with the intricacies of underlying components and their contribution to different tasks. A number of models of working memory structure have been proposed, each with different assumptions and predictions, but none of which adequately accounts for the full range of data in the working memory literature. We report 2 experiments that investigated the effects of load manipulations on dual-task verbal temporary memory and spatial processing. Crucially, we manipulated cognitive load around the measured memory span of each individual participant. We report a clear effect of increasing memory load on processing accuracy, but only when memory load is increased above each participant’s measured memory span. However, increasing processing load did not affect memory performance. We argue that immediate verbal memory may rely both on a temporary phonological store and on activated traces in long-term memory, with the latter deployed to support memory performance for supraspan lists and when a high memory load is coupled with a processing task. We propose that future research should tailor the load manipulations to the capacities of individual participants and suggest that contrasts between models of working memory may be more apparent than real

    Multilab Direct Replication of Flavell, Beach, and Chinsky (1966): Spontaneous Verbal Rehearsal in a Memory Task as a Function of Age

    Get PDF
    Work by Flavell, Beach, and Chinsky indicated a change in the spontaneous production of overt verbalization behaviors when comparing young children (age 5) with older children (age 10). Despite the critical role that this evidence of a change in verbalization behaviors plays in modern theories of cognitive development and working memory, there has been only one other published near replication of this work. In this Registered Replication Report, we relied on researchers from 17 labs who contributed their results to a larger and more comprehensive sample of children. We assessed memory performance and the presence or absence of verbalization behaviors of young children at different ages and determined that the original pattern of findings was largely upheld: Older children were more likely to verbalize, and their memory spans improved. We confirmed that 5- and 6-year-old children who verbalized recalled more than children who did not verbalize. However, unlike Flavell et al., substantial proportions of our 5- and 6-year-old samples overtly verbalized at least sometimes during the picture memory task. In addition, continuous increase in overt verbalization from 7 to 10 years old was not consistently evident in our samples. These robust findings should be weighed when considering theories of cognitive development, particularly theories concerning when verbal rehearsal emerges and relations between speech and memory

    The long-term consequences of retrieval demands during working memory

    Get PDF
    Although it is well known that distraction impairs immediate retrieval of items maintained in working memory (WM; e.g., during complex span tasks), some evidence suggests that these items are more likely to be recalled from episodic memory (EM) compared with items that were studied without any distraction (e.g., during simple span tasks). One account for this delayed advantage of complex span over simple span, or the McCabe effect (McCabe, Journal of Memory and Language, 58[2], 480–494, 2008), is that complex span affords covert retrieval opportunities that facilitate later retrieval from EM by cumulatively reactivating each successively presented item after distraction. This explanation focuses on the processing that occurs during presentation and maintenance of the items, but no work to date has explored whether the differential demands of immediate retrieval between simple and complex span may explain the effect. Accordingly, these experiments examined the impact of immediate retrieval demands on the McCabe effect by comparing typical immediate serial-recall instructions (i.e., recalling the words in their exact order of presentation) to immediate free-recall (Experiments 1–2) and no-recall (Experiments 2 and 3) instructions. The results suggested that the nature of retrieval may constrain the McCabe effect in some situations (Experiments 1–2), but its demands do not drive the McCabe effect given that it was observed in both serial-recall and no-recall conditions (Experiment 3). Instead, activities such as covert retrieval during the processing phase may underlie the McCabe effect, thus further evidencing the importance of processing in WM for the long-term retention of information

    The Psychological Science Accelerator: Advancing Psychology Through a Distributed Collaborative Network

    Get PDF
    Source at https://doi.org/10.1177/2515245918797607.Concerns about the veracity of psychological research have been growing. Many findings in psychological science are based on studies with insufficient statistical power and nonrepresentative samples, or may otherwise be limited to specific, ungeneralizable settings or populations. Crowdsourced research, a type of large-scale collaboration in which one or more research projects are conducted across multiple lab sites, offers a pragmatic solution to these and other current methodological challenges. The Psychological Science Accelerator (PSA) is a distributed network of laboratories designed to enable and support crowdsourced research projects. These projects can focus on novel research questions or replicate prior research in large, diverse samples. The PSA’s mission is to accelerate the accumulation of reliable and generalizable evidence in psychological science. Here, we describe the background, structure, principles, procedures, benefits, and challenges of the PSA. In contrast to other crowdsourced research networks, the PSA is ongoing (as opposed to time limited), efficient (in that structures and principles are reused for different projects), decentralized, diverse (in both subjects and researchers), and inclusive (of proposals, contributions, and other relevant input from anyone inside or outside the network). The PSA and other approaches to crowdsourced psychological science will advance understanding of mental processes and behaviors by enabling rigorous research and systematic examination of its generalizability

    Modeling working memory: An interference model of complex span

    Full text link
    This article introduces a new computational model for the complex-span task, the most popular task for studying working memory. SOB-CS is a two-layer neural network that associates distributed item representations with distributed, overlapping position markers. Memory capacity limits are explained by interference from a superposition of associations. Concurrent processing interferes with memory through involuntary encoding of distractors. Free time in-between distractors is used to remove irrelevant representations, thereby reducing interference. The model accounts for benchmark findings in four areas: (1) effects of processing pace, processing difficulty, and number of processing steps; (2) effects of serial position and error patterns; (3) effects of different kinds of item-distractor similarity; and (4) correlations between span tasks. The model makes several new predictions in these areas, which were confirmed experimentally

    Working Memory Underpins Cognitive Development, Learning, and Education

    Get PDF
    Working memory is the retention of a small amount of information in a readily accessible form. It facilitates planning, comprehension, reasoning, and problem-solving. I examine the historical roots and conceptual development of the concept and the theoretical and practical implications of current debates about working memory mechanisms. Then I explore the nature of cognitive developmental improvements in working memory, the role of working memory in learning, and some potential implications of working memory and its development for the education of children and adults. The use of working memory is quite ubiquitous in human thought, but the best way to improve education using what we know about working memory is still controversial. I hope to provide some directions for research and educational practice

    To which world regions does the valence–dominance model of social perception apply?

    Get PDF
    Over the past 10 years, Oosterhof and Todorov’s valence–dominance model has emerged as the most prominent account of how people evaluate faces on social dimensions. In this model, two dimensions (valence and dominance) underpin social judgements of faces. Because this model has primarily been developed and tested in Western regions, it is unclear whether these findings apply to other regions. We addressed this question by replicating Oosterhof and Todorov’s methodology across 11 world regions, 41 countries and 11,570 participants. When we used Oosterhof and Todorov’s original analysis strategy, the valence–dominance model generalized across regions. When we used an alternative methodology to allow for correlated dimensions, we observed much less generalization. Collectively, these results suggest that, while the valence–dominance model generalizes very well across regions when dimensions are forced to be orthogonal, regional differences are revealed when we use different extraction methods and correlate and rotate the dimension reduction solution.C.L. was supported by the Vienna Science and Technology Fund (WWTF VRG13-007); L.M.D. was supported by ERC 647910 (KINSHIP); D.I.B. and N.I. received funding from CONICET, Argentina; L.K., F.K. and Á. Putz were supported by the European Social Fund (EFOP-3.6.1.-16-2016-00004; ‘Comprehensive Development for Implementing Smart Specialization Strategies at the University of Pécs’). K.U. and E. Vergauwe were supported by a grant from the Swiss National Science Foundation (PZ00P1_154911 to E. Vergauwe). T.G. is supported by the Social Sciences and Humanities Research Council of Canada (SSHRC). M.A.V. was supported by grants 2016-T1/SOC-1395 (Comunidad de Madrid) and PSI2017-85159-P (AEI/FEDER UE). K.B. was supported by a grant from the National Science Centre, Poland (number 2015/19/D/HS6/00641). J. Bonick and J.W.L. were supported by the Joep Lange Institute. G.B. was supported by the Slovak Research and Development Agency (APVV-17-0418). H.I.J. and E.S. were supported by a French National Research Agency ‘Investissements d’Avenir’ programme grant (ANR-15-IDEX-02). T.D.G. was supported by an Australian Government Research Training Program Scholarship. The Raipur Group is thankful to: (1) the University Grants Commission, New Delhi, India for the research grants received through its SAP-DRS (Phase-III) scheme sanctioned to the School of Studies in Life Science; and (2) the Center for Translational Chronobiology at the School of Studies in Life Science, PRSU, Raipur, India for providing logistical support. K. Ask was supported by a small grant from the Department of Psychology, University of Gothenburg. Y.Q. was supported by grants from the Beijing Natural Science Foundation (5184035) and CAS Key Laboratory of Behavioral Science, Institute of Psychology. N.A.C. was supported by the National Science Foundation Graduate Research Fellowship (R010138018). We acknowledge the following research assistants: J. Muriithi and J. Ngugi (United States International University Africa); E. Adamo, D. Cafaro, V. Ciambrone, F. Dolce and E. Tolomeo (Magna Græcia University of Catanzaro); E. De Stefano (University of Padova); S. A. Escobar Abadia (University of Lincoln); L. E. Grimstad (Norwegian School of Economics (NHH)); L. C. Zamora (Franklin and Marshall College); R. E. Liang and R. C. Lo (Universiti Tunku Abdul Rahman); A. Short and L. Allen (Massey University, New Zealand), A. Ateş, E. Güneş and S. Can Özdemir (Boğaziçi University); I. Pedersen and T. Roos (Åbo Akademi University); N. Paetz (Escuela de Comunicación Mónica Herrera); J. Green (University of Gothenburg); M. Krainz (University of Vienna, Austria); and B. Todorova (University of Vienna, Austria). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.https://www.nature.com/nathumbehav/am2023BiochemistryGeneticsMicrobiology and Plant Patholog

    Azathioprine induced colitis: a case report and review of the literature

    No full text
    We report a case of an allergic hypersensitivity reaction on azathioprine presenting with colitis. Allergic reactions on azathioprine are common in patient with inflammatory bowel disease. The clinic of the allergic reaction on azathioprine in our patient was atypical in the way it mimicked an acute exacerbation of inflammatory bowel disease. The pathogenesis of the allergic reaction is still unclear. Although re-challenge can be life-threatening and should always be done with precautions, it may definitively proof the causal association with the drug and decide for definitive cessation In allergic reactions there is no link with TPMT activity but other genetically predispositions are propose

    Domain-general involvement of the posterior frontolateral cortex in time-based resource-sharing in working memory: An fMRI study

    No full text
    Item does not contain fulltextWorking memory is often defined in cognitive psychology as a system devoted to the simultaneous processing and maintenance of information. In line with the time-based resource-sharing model of working memory (TBRS; Barrouillet and Camos, 2015; Barrouillet et al., 2004), there is accumulating evidence that, when memory items have to be maintained while performing a concurrent activity, memory performance depends on the cognitive load of this activity, independently of the domain involved. The present study used fMRI to identify regions in the brain that are sensitive to variations in cognitive load in a domain-general way. More precisely, we aimed at identifying brain areas that activate during maintenance of memory items as a direct function of the cognitive load induced by both verbal and spatial concurrent tasks. Results show that the right IFJ and bilateral SPL/IPS are the only areas showing an increased involvement as cognitive load increases and do so in a domain general manner. When correlating the fMRI signal with the approximated cognitive load as defined by the TBRS model, it was shown that the main focus of the cognitive load-related activation is located in the right IFJ. The present findings indicate that the IFJ makes domain-general contributions to time-based resource-sharing in working memory and allowed us to generate the novel hypothesis by which the IFJ might be the neural basis for the process of rapid switching. We argue that the IFJ might be a crucial part of a central attentional bottleneck in the brain because of its inability to upload more than one task rule at once.13 p
    corecore