164 research outputs found

    Robotic manipulation for the shoe-packaging process

    Full text link
    [EN] This paper presents the integration of a robotic system in a human-centered environment, as it can be found in the shoe manufacturing industry. Fashion footwear is nowadays mainly handcrafted due to the big amount of small production tasks. Therefore, the introduction of intelligent robotic systems in this industry may contribute to automate and improve the manual production steps, such us polishing, cleaning, packaging, and visual inspection. Due to the high complexity of the manual tasks in shoe production, cooperative robotic systems (which can work in collaboration with humans) are required. Thus, the focus of the robot lays on grasping, collision detection, and avoidance, as well as on considering the human intervention to supervise the work being performed. For this research, the robot has been equipped with a Kinect camera and a wrist force/ torque sensor so that it is able to detect human interaction and the dynamic environment in order to modify the robot¿s behavior. To illustrate the applicability of the proposed approach, this work presents the experimental results obtained for two actual platforms, which are located at different research laboratories, that share similarities in their morphology, sensor equipment and actuation system.This work has been partly supported by the Ministerio de Economia y Competitividad of the Spanish Government (Key No.: 0201603139 of Invest in Spain program and Grant No. RTC-2016-5408-6) and by the Deutscher Akademischer Austauschdienst (DAAD) of the German Government (Projekt-ID 54368155).Gracia Calandin, LI.; Perez-Vidal, C.; Mronga, D.; Paco, JD.; Azorin, J.; Gea, JD. (2017). Robotic manipulation for the shoe-packaging process. The International Journal of Advanced Manufacturing Technology. 92(1-4):1053-1067. https://doi.org/10.1007/s00170-017-0212-6S10531067921-4Pedrocchi N, Villagrossi E, Cenati C, Tosatti LM (2017) Design of fuzzy logic controller of industrial robot for roughing the uppers of fashion shoes. Int J Adv Manuf Technol 77(5):939–953Hinojo-Perez JJ, Davia-Aracil M, Jimeno-Morenilla A, Sanchez-Romero L, Salas F (2016) Automation of the shoe last grading process according to international sizing systems. Int J Adv Manuf Technol 85(1):455–467Dura-Gil JV, Ballester-Fernandez A, Cavallaro M, Chiodi A, Ballarino A, von Arnim V., Brondi C, Stellmach D (2016) New technologies for customizing products for people with special necessities: project fashion-able. Int J Comput Integr Manuf. In Press, doi: 10.1080/0951192X.2016.1145803Jatta F, Zanoni L, Fassi I, Negri S (2004) A roughing/cementing robotic cell for custom made shoe manufacture. Int J Comput Integr Manuf 17(7):645–652Nemec B, Zlajpah L (2008) Robotic cell for custom finishing operations. Int J Comput Integr Manuf 21(1):33–42Molfino R, et al (2004) Modular, reconfigurable prehensor for grasping and handling limp materials in the shoe industry. In: IMS international forum, CernobbioIntelishoe - integration and linking of shoe and auxiliary industries. 5Th FPSpecial shoes movement. 7th FP, NMP-2008-SME-2-R.229261, http://www.sshoes.euVilaca JL, Fonseca J (2007) A new software application for footwear industry. In: IEEE international symposium on intelligent signal processing WISP 2007, pp 1–6Custom, environment and comfort made shoe. 6TH FP [2004-2008]Framework of integrated technologies for user centred products. Grant agreement no.: CP-TP 229336-2. NMP2-SE-2009-229336 FIT4U -7TH FPRobofoot project website. http://www.robofoot.eu/ . Accessed 2016/ 09/16Montiel E (2007) Customization in the footwear industry. In: proceedings of the MIT congress on mass customizationSucan I, Kavraki LE (2012) A sampling-based tree planner for systems with complex dynamics, vol 28Kuffner JJ Jr, LaValle SM (2000) Rrt-connect: an efficient approach to single-query path planning. In: Proceedings of the IEEE international conference on robotics and automation, 2000. ICRA ’00, vol 2, pp 995–1001Ratliff N, Zucker M, Andrew Bagnell J, Srinivasa S (2009) Chomp: gradient optimization techniques for efficient motion planning. In: IEEE international conference on robotics and automation, 2009. ICRA ’09, pp 489–494Brock O, Khatib O (1997) Elastic strips: real-time path modification for mobile manipulationKroger T (2011) Opening the door to new sensor-based robot applications #x2014;the reflexxes motion libraries. In: 2011 IEEE international conference on robotics and automation (ICRA), pp 1–4Berg J, Ferguson D, Kuffner J (2006) Anytime path planning and replanning in dynamic environments. In: Proceedings of the IEEE international conference on robotics and automation (ICRA), pp 2366–2371Berenson D, Abbeel P, Goldberg K (2012) A robot path planning framework that learns from experience. In: IEEE international conference on robotics and automation. IEEE, pp 3671–3678Bischoff R, Kurth J, Schreiber G, Koeppe R, Albu-Schaeffer A, Beyer A, Eiberger O, Haddadin S, Stemmer A, Grunwald G, Hirzinger G (2010) The kuka-dlr lightweight robot arm — a new reference platform for robotics research and manufacturing. In: Robotics (ISR), 2010 41st international symposium on and 2010 6th German conference on robotics (ROBOTIK), pp 1–8Rooks B (2006) The harmonious robot. Industrial Robot-an International Journal 33:125–130Vahrenkamp N, Wieland S, Azad P, Gonzalez D, Asfour T, Dillmann R (2008) Visual servoing for humanoid grasping and manipulation tasks. In: 8th IEEE-RAS international conference on humanoid robots, 2008, Humanoids 2008, pp 406–412Pieters RS, et al. (2012) Direct trajectory generation for vision-based obstacle avoidance. In: Proceedings of the 2012 IEEE/RSJ international conference on intelligent robots and systemsKinect for windows sensor components and specifications, website. http://msdn.microsoft.com/en-us/library/jj131033.aspx . Accessed 2016/09/16Jatta F, Zanoni L, Fassi I, Negri S (2004) A roughing cementing robotic cell for custom made shoe manufacture. Int J Comput Integr Manuf 17(7):645–652Maurtua I, Ibarguren A, Tellaeche A (2012) Robotics for the benefit of footwear industry. In: International conference on intelligent robotics and applications. Springer, Berlin, pp 235–244Arkin RC (1998) Behavior-based robotics. MIT PressNilsson NJ (1980) Principles of artificial intelligence. Morgan KaufmannAsada H, Slotine J-JE (1986) Robot analysis and control. WileyROS official web page. http://www.ros.org , (Accessed on 2017/ 02/03)Langmann B, Hartmann K, Loffeld O (2012) Depth camera technology comparison and performance evaluation. In: 1st international conference on pattern recognition applications and methods, pp 438–444The player project. free software tools for robot and sensor applications. http://playerstage.sourceforge.net/ , (Accessed on 2017/ 02/03)Yet another robot platform (YARP). http://www.yarp.it/ , (Accessed on 2017/02/03)The OROCOS project. smarter control in robotics and automation. http://www.orocos.org/ , (Accessed on 2017/02/03)CARMEN: Robot navigation toolkit. http://carmen.sourceforge.net/ , (Accessed on 2017/02/03)ORCA: Components for robotics. http://orca-robotics.sourceforge.net/ , (Accessed on 2017/02/03)MOOS: Mission oriented operating suite. http://www.robots.ox.ac.uk/mobile/MOOS/wiki/pmwiki.php/Main/HomePage , (Accessed on 2017/02/03)Microsoft robotics studio. https://www.microsoft.com/en-us/download/details.aspx?id=29081 , (Accessed on 2017/02/03)Pr2 ros website. http://www.ros.org/wiki/Robots/PR2 . Accessed 2016/09/16Care-o-bot 3 ros website. http://www.ros.org/wiki/Robots/Care-O-bot . Accessed 2016/09/16Aila, mobile dual-arm manipulation, website. http://robotik.dfki-bremen.de/de/forschung/robotersysteme/aila.html . Accessed 2016/09/16Package libpcan documentation, website. http://www.ros.org/wiki/libpcan . Accessed 2016/09/16Pcan driver for linux, user manual. http://www.peak-system.com . Document version 7.1 (2011-03-21)Pcan driver for linux, user manual. http://wiki.ros.org/schunk_powercube_chain . Accessed 2016/09/16Ros nodes documentation, website. http://www.ros.org/wiki/Nodes . Accessed 2016/09/16Ros messages documentation, website. http://www.ros.org/wiki/Messages . Accessed 2016/09/16Ros topics documentation, website. http://www.ros.org/wiki/Topics . Accessed 2016/09/16Ros services documentation, website. http://www.ros.org/wiki/Services . Accessed 2016/09/16Yaml files officials website. http://www.yaml.org/ . Accessed 2016/ 09/16Ros robot model (urdf) documentation website. http://www.ros.org/wiki/urdf . Accessed 2016/09/16Point cloud library (pcl), website. http://www.pointclouds.org/ . Accessed 2016/09/16Arm navigation ros stack, website. http://wiki.ros.org/arm_navigation . Accessed 2016/09/16Hornung A, Wurm KM, Bennewitz M, Stachniss C, Burgard W (2013) Octomap: an efficient probabilistic 3d mapping framework based on octrees Autonomous RobotsOrocos kdl documentation, website. http://www.orocos.org/kdl . Accessed 2016/09/16Ioan A, Şucan MM, Kavraki LE (2012) The open motion planning library, vol 19. http://ompl.kavrakilab.orgWaibel M, Beetz M, Civera J, D’Andrea R, Elfring J, Galvez-Lopez D, Haussermann K, Janssen R, Montiel JMM, Perzylo A, Schiessle B, Tenorth M, Zweigle O, van de Molengraft R (2011) Roboearth. IEEE Robot Autom Mag 18(2):69–82Simox toolbox. http://simox.sourceforge.net/ . Accessed 2016/09/16Moreels P, Perona P (2007) Evaluation of features detectors and descriptors based on 3d objects. Int J Comput Vis 73:263–284Viola P, Jones M (2001) Rapid object detection using a boosted cascade of simple features. In: Proceedings of the IEEE computer society conference on computer vision and pattern recognition, 2001. CVPR 2001, vol 1Teuliere C, Marchand E, Eck L (2010) Using multiple hypothesis in model-based tracking. In: 2010 IEEE international conference on robotics and automation (ICRA), pp 4559–4565Moulianitis VC, Dentsoras AJ, Aspragathos NA (1999) A knowledge-based system for the conceptual design of grippers for handling fabrics. Artif Intell Eng Des Anal Manuf 13(1):13–25Davis S, Tsagarakis NG, Caldwell DG (2008) The initial design and manufacturing process of a low cost hand for the robot icub. In: 8th IEEE-RAS international conference on humanoid robots, pp 40–45Cerruti G, Chablat D, Gouaillier D, Sakka S (2017) Design method for an anthropomorphic hand able to gesture and grasp. In: IEEE international conference on robotics and automation. IEEE, pp 3671–367

    Automatic Identification of Defects on Eggshell Through a Multispectral Vision System

    Get PDF
    The objective of this research was to develop an off-line artificial vision system to automatically detect defective eggshells, i.e., dirty or cracked eggshells, by employing multispectral images with the final purpose to adapt the system to an on-line grading machine. In particular, this work was focused to study the feasibility of identifying organic stains on brown eggshells (dirty eggshell), caused by blood, feathers, feces, etc., from natural stains, caused by deposits of pigments on the outer layer of clean eggshells. During the analysis a total of 384 eggs were evaluated (clean: 148, dirty: 236). Dirty samples were evaluated visually in order to classify them according to the kind of defect (blood, feathers, and white, clear or dark feces), and clean eggshells were classified on the basis of the colour of the natural stains (clear or dark). For each sample digital images were acquired by employing a Charged Coupled Device (CCD) camera endowed with 15 monochromatic filters (440-940 nm). A Matlab® function was developed in order to automate the process and analyze images, with the aim to classify samples as clean or dirty. The program was constituted by three major steps: first, the research of an opportune combination of monochromatic images in order to isolate the eggshell from the background; second, the detection of the dirt stains; third, the classification of the images samples into the dirty or clean group on the basis of geometric characteristics of the stains (area in pixel). The proposed classification algorithm was able to correctly classify near 98% of the samples with a very low processing time (0.05s). The robustness of the proposed classification was observed applying an external validation to a second set of samples (n = 178), obtaining similar percentage of correctly classified samples (97%)

    Local deformation in a hydrogel induced by an external magnetic field

    Full text link
    The aim of this study is to prove the feasibility of a system able to apply local mechanical loading on cells seeded in a hydrogel for tissue engineering applications. This experimental study is based on a previously developed artificial cartilage model with different concentrations of poly(vinyl alcohol) (PVA) that simulates the cartilage extracellular matrix (ECM). Poly(l-lactic acid) (PLLA) microspheres with dispersed magnetic nanoparticles (MNPs) were produced with an emulsion method. These microspheres were embedded in aqueous PVA solutions with varying concentration to resemble increased viscosity of growing tissue during regeneration. The ability to induce a local deformation in the ECM was assessed by applying a steady or an oscillatory magnetic field gradient to different PVA solutions containing the magnetic microparticles, similarly as in ferrogels. PLLA microparticle motion was recorded, and the images were analyzed. Besides, PVA gels and PLLA microparticles were introduced into the pores of a polycaprolactone scaffold, and the microparticle distribution and the mechanical properties of the construct were evaluated. The results of this experimental model show that the dispersion of PLLA microparticles containing MNPs, together with cells in a supporting gel, will allow applying local mechanical stimuli to cells during tissue regeneration. This local stimulation can have a positive effect on the differentiation of seeded cells and improve tissue regeneration.The authors gratefully acknowledge the financial support from the Spanish Ministry of Economy and Competitiveness through the MAT2013-46467-C4-1-R project, including the Feder funds. CIBER-BBN is an initiative funded by the VI National R&D&I Plan 2008-2011, Iniciativa Ingenio 2010, Consolider Program. CIBER Actions are financed by the Instituto de Salud Carlos III with assistance from the European Regional Development Fund. The authors thank "Servicio de Microscopia Electronica" of Universitat Politecnica de Valencia for their invaluable help. The translation of this paper was funded by the Universitat Politecnica de Valencia, Spain.Vikingsson, L.; Vinals Guitart, Á.; Valera Martínez, A.; Riera Guasp, J.; Vidaurre Garayo, AJ.; Gallego Ferrer, G.; Gómez Ribelles, JL. (2016). Local deformation in a hydrogel induced by an external magnetic field. Journal of Materials Science. 51(22):9979-9990. https://doi.org/10.1007/s10853-016-0226-8S997999905122Eyre D (2002) Collagen of articular cartilage. Arthritis Res 4:30–35Roughley PJ, Lee ER (1994) Cartilage proteoglycans: structure and potential functions. Microsc Res Tech 28:385–397Gillard GC, Reilly HC, Bell-Booth PG, Flint MH (1979) The influence of mechanical forces on the glycosaminoglycan content of the rabbit flexor digitorum profundus tendon. Connect Tissue Res 7:37–46Quinn TM, Grodzinsky AJ, Buschmann MD, Kim YJ, Hunziker EB (1998) Mechanical compression alters proteoglycan deposition and matrix deformation around individual cells in cartilage explants. J Cell Sci 111:573–583Banes AJ, Tsuzaki M, Yamamoto J, Fischer T, Brigman B, Brown T, Miller L (1995) Mechanoreception at the cellular level: the detection, interpretation, and diversity of responses to mechanical signals. Biochem Cell Biol 73:349–365Appelman T, Mizrahi J, Elisseeff J, Seliktar D (2011) The influence of biological motifs and dynamic mechanical stimulation in hydrogel scaffold systems on the phenotype of chondrocytes. Biomaterials 32:1508–1516Mow VC, Ratcliffe A, Poole AR (1992) Cartilage and diarthrodial joints as paradigms for hierarchical materials and structures. Biomaterials 13:67–97Mow VC, Huiskes R (2005) Basic orthopaedic biomechanics and mechano-biology. Lippincott Williams and Wilkins, PhiladelphiaBrady MA, Waldman SD, Ethier CR (2015) The application of multiple biophysical cues to engineer functional neocartilage for treatment of osteoarthritis. Part I: cellular response. Tissue Eng Part B Rev 21:1–19Valhmu WB, Stazzone EJ, Bachrach NM, Saed-Nejad F, Fischer SG, Mow VC, Ratcliffe A (1998) Load-controlled compression of articular cartilage induces a transient stimulation of aggrecan gene expression. Arch Biochem Biophys 353:29–36Ingber DE (1997) Tensegrity: the architectural basis of cellular mechanotransduction. Ann Rev Physiol 59:575–599Khan S, Sheetz MP (1997) Force effects on biochemical kinetics. Ann Rev Biochem 66:785–805Hutmacher DW (2000) Scaffolds in tissue engineering bone and cartilage. Biomaterials 21:2529–2543Crick FHC, Hughes AFW (1950) The physical properties of cytoplasm: a study by means of the magnetic particle method. Exp Cell Res 1:37–80Valberg PA, Albertini DF (1985) Cytoplasmic motions, rheology, and structure probed by a novel magnetic particle method. J Cell Biol 101:130–140Valberg PA, Feldman HA (1987) Magnetic particle motions within living cells. Measurement of cytoplasmic viscosity and motile activity. Biophys J 52:551–561Wang N, Ingber DE (1995) Probing transmembrane mechanical coupling and cytomechanics using magnetic twisting cytometry. Biochem Cell Biol 73:327–335Pommerenke H, Schreiber E, Durr F, Nebe B, Hahnel C, Moller W, Rychly J (1996) Stimulation of integrin receptors using a magnetic drag force device induces an intracellular free calcium response. Eur J Cell Biol 70:157–164Bausch AR, Hellerer U, Essler M, Aepfelbacher M, Sackmann E (2001) Rapid stiffening of integrin receptor-actin linkages in endothelial cells stimulated with thrombin: a magnetic bead microrheology study. Biophys J 80:2649–2657Li L, Yang G, Li J, Ding S, Zhou S (2014) Cell behaviors on magnetic electrospun poly-d, l-lactide nano fibers. Mater Sci Eng, C 34:252–261Fuhrer R, Hofmann S, Hild N, Vetsch JR, Herrmann IK, Grass RN, Stark WJ (2013) Pressureless mechanical induction of stem cell differentiation is dose and frequency dependent. PLoS One 8:e81362Cezar CA, Roche ET, Vandenburgh HH, Duda GN, Walsh CJ, Mooney DJ (2016) Biologic-free mechanically induced muscle regeneration. Proc Natl Acad Sci USA 113:1534–1539Vikingsson L, Gallego Ferrer G, Gómez-Tejedor JA, Gómez Ribelles JL (2014) An in vitro experimental model to predict the mechanical behaviour of macroporous scaffolds implanted in articular cartilage. J Mech Behav Biomed Mater 32:125–131Vikingsson L, Gomez-Tejedor JA, Gallego Ferrer G, Gomez Ribelles JL (2015) An experimental fatigue study of a porous scaffold for the regeneration of articular cartilage. J Biomech 48:1310–1317Vikingsson L, Claessens B, Gómez-Tejedor JA, Gallego Ferrer G, Gómez Ribelles JL (2015) Relationship between micro-porosity, water permeability and mechanical behavior in scaffolds for cartilage engineering. J Mech Behav Biomed Mater 48:60–69Li F, Su YL, Shi DF, Wang CT (2010) Comparison of human articular cartilage and polyvinyl alcohol hydrogel as artificial cartilage in microstructure analysis and unconfined compression. Adv Mater Res Trans Tech Publ 87:188–193Grant C, Twigg P, Egan A, Moody A, Eagland D, Crowther N, Britland S (2006) Poly(vinyl alcohol) hydrogel as a biocompatible viscoelastic mimetic for articular cartilage. Biotechnol Prog 22:1400–1406Weeber R, Kantorovich S, Holm C (2015) Ferrogels cross-linked by magnetic nanoparticles—Deformation mechanisms in two and three dimensions studied by means of computer simulations. J Magn Magn Mater 383:262–266Lebourg M, Suay Antón J, Gómez Ribelles JL (2008) Porous membranes of PLLA–PCL blend for tissue engineering applications. Eur Polym J 44:2207–2218Santamaría VA, Deplaine H, Mariggió D, Villanueva-Molines AR, García-Aznar JM, Gómez Ribelles JL, Doblaré M, Gallego Ferrer G, Ochoa I (2012) Influence of the macro and micro-porous structure on the mechanical behavior of poly (l-lactic acid) scaffolds. J Non Cryst Solids 358:3141–3149Panadero JA, Vikingsson L, Gomez Ribelles JL, Lanceros-Mendez S, Sencadas V (2015) In vitro mechanical fatigue behaviour of poly-ε-caprolactone macroporous scaffolds for cartilage tissue engineering. Influence of pore filling by a poly(vinyl alcohol) gel. J Biomed Mater Res Part B Appl Biomater 103:1037–1043Hassan CM, Peppas NA (2000) Structure and applications of poly(vinyl alcohol) hydrogels produced by conventional crosslinking or by freezing/thawing methods. Adv Polym Sci 153:37–65Labet M, Thielemans W (2009) Synthesis of polycaprolactone: a review. Chem Soc Rev 38:3484–3504Mano JF, Gómez Ribelles JL, Alves NM, Salmerón Sanchez M (2005) Glass transition dynamics and structural relaxation of PLLA studied by DSC: influence of crystallinity. Polymer 46:8258–8265Eckstein F, Lemberger B, Gratzke C, Hudelmaier M, Glaser C, Englmeier KH, Reiser M (2005) In vivo cartilage deformation after different types of activity and its dependence on physical training status. Ann Rheum Dis 64:291–295Garlotta D (2001) A literature review of poly(lactic acid). J Polym Eng 9:63–84Kovacs AJ, Aklonis JJ, Hutchinson JM, Ramos AR (1979) Isobaric volume and enthalpy recovery of glasses. II. A transparent multiparameter theory. J Polym Sci Polym Phys 17:1097–1162Hernández F, Molina Mateo J, Romero Colomer F, Salmerón Sánchez M, Gómez Ribelles JL, Mano J (2005) Influence of low-temperature nucleation on the crystallization process of poly(l-lactide). Biomacromolecules 6:3291–3299Wang Y, Gómez Ribelles JL, Salmerón Sánchez M, Mano JF (2005) Morphological contribution to glass transition in poly(l-lactic acid). Macromolecules 38:4712–4718Salmerón Sánchez M, Vincent BM, Vanden Poel G, Gómez-Ribelles JL (2007) Effect of the cooling rate on the nucleation kinetics of poly(l-lactic acid) and its influence on morphology. Macromolecules 40:7989–7997Nobuyuki O (1975) A threshold selection method from gray-level histograms. Automatica 11:23–2

    Denaturing Gradient Gel Electrophoresis (DGGE) as a Powerful Novel Alternative for Differentiation of Epizootic ISA Virus Variants

    Get PDF
    Infectious Salmon Anemia is a devastating disease critically affecting world-wide salmon production. Chile has been particularly stricken by this disease which in all cases has been directly related with its causative agent, a novel orthomyxovirus which presents specific and distinctive infective features. Among these, two molecular markers have been directly associated with pathogenicity in two of the eight RNA sub genomic coding units of the virus: an insertion hot spot region present in viral segment 5 and a Highly Polymorphic Region (HPR) located in viral segment 6. Here we report the successful adaptation of a PCR-dependent denaturing gel electrophoresis technique (DGGE), which enables differentiation of selected reported HPR epizootic variants detected in Chile. At the same time, the technique allows us to distinguish one nucleotide differences in sequences associated with the intriguing, and still not well-understood, insertion events which tend to occur on RNA Segment 5. Thus, the versatility of the technique opens new opportunities for improved understanding of the complex biology of all ISA variants as well as possible applications to other highly variable pathogens

    The Dynamics of Latifundia Formation

    Get PDF
    Land tenure inequity is a major social problem in developing nations worldwide. In societies, where land is a commodity, inequities in land tenure are associated with gaps in income distribution, poverty and biodiversity loss. A common pattern of land tenure inequities through the history of civilization has been the formation of latifundia [Zhuāngyuán in chinese], i.e., a pattern where land ownership is concentrated by a small fraction of the whole population. Here, we use simple Markov chain models to study the dynamics of latifundia formation in a heterogeneous landscape where land can transition between forest, agriculture and recovering land. We systematically study the likelihood of latifundia formation under the assumption of pre-capitalist trade, where trade is based on the average utility of land parcels belonging to each individual landowner during a discrete time step. By restricting land trade to that under recovery, we found the likelihood of latifundia formation to increase with the size of the system, i.e., the amount of land and individuals in the society. We found that an increase of the transition rate for land use changes, i.e., how quickly land use changes, promotes more equitable patterns of land ownership. Disease introduction in the system, which reduced land profitability for infected individual landowners, promoted the formation of latifundia, with an increased likelihood for latifundia formation when there were heterogeneities in the susceptibility to infection. Finally, our model suggests that land ownership reforms need to guarantee an equitative distribution of land among individuals in a society to avoid the formation of latifundia

    The p38/MK2/Hsp25 Pathway Is Required for BMP-2-Induced Cell Migration

    Get PDF
    Background: Bone morphogenetic proteins (BMPs) have been shown to participate in the patterning and specification of several tissues and organs during development and to regulate cell growth, differentiation and migration in different cell types. BMP-mediated cell migration requires activation of the small GTPase Cdc42 and LIMK1 activities. In our earlier report we showed that activation of LIMK1 also requires the activation of PAKs through Cdc42 and PI3K. However, the requirement of additional signaling is not clearly known. Methodology/Principal Findings: Activation of p38 MAPK has been shown to be relevant for a number of BMP-2¿s physiological effects. We report here that BMP-2 regulation of cell migration and actin cytoskeleton remodelling are dependent on p38 activity. BMP-2 treatment of mesenchymal cells results in activation of the p38/MK2/Hsp25 signaling pathway downstream from the BMP receptors. Moreover, chemical inhibition of p38 signaling or genetic ablation of either p38¿ or MK2 blocks the ability to activate the downstream effectors of the pathway and abolishes BMP-2-induction of cell migration. These signaling effects on p38/MK2/Hsp25 do not require the activity of either Cdc42 or PAK, whereas p38/MK2 activities do not significantly modify the BMP-2-dependent activation of LIMK1, measured by either kinase activity or with an antibody raised against phospho-threonine 508 at its activation loop. Finally, phosphorylated Hsp25 colocalizes with the BMP receptor complexes in lamellipodia and overexpression of a phosphorylation mutant form of Hsp25 is able to abolish the migration of cells in response to BMP-2. Conclusions: These results indicate that Cdc42/PAK/LIMK1 and p38/MK2/Hsp25 pathways, acting in parallel and modulating specific actin regulatory proteins, play a critical role in integrating responses during BMP-induced actin reorganization and cell migration

    Deregulation of Rab and Rab Effector Genes in Bladder Cancer

    Get PDF
    Growing evidence indicates that Rab GTPases, key regulators of intracellular transport in eukaryotic cells, play an important role in cancer. We analysed the deregulation at the transcriptional level of the genes encoding Rab proteins and Rab-interacting proteins in bladder cancer pathogenesis, distinguishing between the two main progression pathways so far identified in bladder cancer: the Ta pathway characterized by a high frequency of FGFR3 mutation and the carcinoma in situ pathway where no or infrequent FGFR3 mutations have been identified. A systematic literature search identified 61 genes encoding Rab proteins and 223 genes encoding Rab-interacting proteins. Transcriptomic data were obtained for normal urothelium samples and for two independent bladder cancer data sets corresponding to 152 and 75 tumors. Gene deregulation was analysed with the SAM (significant analysis of microarray) test or the binomial test. Overall, 30 genes were down-regulated, and 13 were up-regulated in the tumor samples. Five of these deregulated genes (LEPRE1, MICAL2, RAB23, STXBP1, SYTL1) were specifically deregulated in FGFR3-non-mutated muscle-invasive tumors. No gene encoding a Rab or Rab-interacting protein was found to be specifically deregulated in FGFR3-mutated tumors. Cluster analysis showed that the RAB27 gene cluster (comprising the genes encoding RAB27 and its interacting partners) was deregulated and that this deregulation was associated with both pathways of bladder cancer pathogenesis. Finally, we found that the expression of KIF20A and ZWINT was associated with that of proliferation markers and that the expression of MLPH, MYO5B, RAB11A, RAB11FIP1, RAB20 and SYTL2 was associated with that of urothelial cell differentiation markers. This systematic analysis of Rab and Rab effector gene deregulation in bladder cancer, taking relevant tumor subgroups into account, provides insight into the possible roles of Rab proteins and their effectors in bladder cancer pathogenesis. This approach is applicable to other group of genes and types of cancer
    corecore