327 research outputs found

    Development of a training program to support health care professionals to deliver the SPACE for COPD self-management program

    Get PDF
    Open access journalBackground: With the growing burden of COPD and associated morbidity and mortality, a need for self-management has been identified. The Self-management Programme of Activity, Coping and Education for Chronic Obstructive Pulmonary Disease (SPACE for COPD) manual was developed to support self-management in COPD patients. Currently, there is no literature available regarding health care professionals’ training needs when supporting patients with COPD on self-management. Aim: This study sought to identify these needs to inform, design and develop a training program for health care professionals being trained to deliver a self-management program in COPD. Methods: Fourteen health care professionals from both primary and secondary care COPD services participated in face-to-face semistructured interviews. Thematic analysis was used to produce a framework and identify training needs and views on delivery of the SPACE for COPD self-management program. Components of training were web-based knowledge training, with pre- and posttraining knowledge questionnaires, and a 1-day program to introduce the self-management manual. Feedback was given after training to guide the development of the training program. Results: Health care professionals were able to identify areas where they required increased knowledge to support patients. This was overwhelming in aspects of COPD seen to be outside of their current clinical role. Skills in goal setting and behavioral change were not elicited as a training need, suggesting a lack of understanding of components of supporting self-management. An increase in knowledge of COPD was demonstrated following the training program. Conclusion: Both knowledge and skill gaps existed in those who would deliver self-management. Analysis of this has enabled a training program to be designed to address these gaps and enable health care professionals to support patients in self-management. Keywords: self-management, COPD, health care professionals, trainin

    Mouse prion protein polymorphism Phe-108/Val-189 affects the kinetics of fibril formation and the response to seeding: evidence for a two-step nucleation polymerization mechanism

    Get PDF
    Prion diseases are fatal neurodegenerative disorders associated with the polymerization of the cellular form of prion protein (PrP(C)) into an amyloidogenic β-sheet infectious form (PrP(Sc)). The sequence of host PrP is the major determinant of host prion disease susceptibility. In mice, the presence of allele a (Prnp(a), encoding the polymorphism Leu-108/Thr-189) or b (Prnp(b), Phe-108/Val-189) is associated with short or long incubation times, respectively, following infection with PrP(Sc). The molecular bases linking PrP sequence, infection susceptibility, and convertibility of PrP(C) into PrP(Sc) remain unclear. Here we show that recombinant PrP(a) and PrP(b) aggregate and respond to seeding differently in vitro. Our kinetic studies reveal differences during the nucleation phase of the aggregation process, where PrP(b) exhibits a longer lag phase that cannot be completely eliminated by seeding the reaction with preformed fibrils. Additionally, PrP(b) is more prone to propagate features of the seeds, as demonstrated by conformational stability and electron microscopy studies of the formed fibrils. We propose a model of polymerization to explain how the polymorphisms at positions 108 and 189 produce the phenotypes seen in vivo. This model also provides insight into phenomena such as species barrier and prion strain generation, two phenomena also influenced by the primary structure of PrP.FWN – Publicaties zonder aanstelling Universiteit Leide

    Liquid antiferromagnets in two dimensions

    Full text link
    It is shown that, for proper symmetry of the parent lattice, antiferromagnetic order can survive in two-dimensional liquid crystals and even isotropic liquids of point-like particles, in contradiction to what common sense might suggest. We discuss the requirements for antiferromagnetic order in the absence of translational and/or orientational lattice order. One example is the honeycomb lattice, which upon melting can form a liquid crystal with quasi-long-range orientational and antiferromagnetic order but short-range translational order. The critical properties of such systems are discussed. Finally, we draw conjectures for the three-dimensional case.Comment: 4 pages RevTeX, 4 figures include

    Flux-lattice melting in two-dimensional disordered superconductors

    Full text link
    The flux line lattice melting transition in two-dimensional pure and disordered superconductors is studied by a Monte Carlo simulation using the lowest Landau level approximation and quasi-periodic boundary condition on a plane. The position of the melting line was determined from the diffraction pattern of the superconducting order parameter. In the clean case we confirmed the results from earlier studies which show the existence of a quasi-long range ordered vortex lattice at low temperatures. Adding frozen disorder to the system the melting transition line is shifted to slightly lower fields. The correlations of the order parameter for translational long range order of the vortex positions seem to decay slightly faster than a power law (in agreement with the theory of Carpentier and Le Doussal) although a simple power law decay cannot be excluded. The corresponding positional glass correlation function decays as a power law establishing the existence of a quasi-long range ordered positional glass formed by the vortices. The correlation function characterizing a phase coherent vortex glass decays however exponentially ruling out the possible existence of a phase coherent vortex glass phase.Comment: 12 pages, 21 figures, final version to appear in Phys. Rev.

    Atenolol versus losartan in children and young adults with Marfan's syndrome

    Get PDF
    BACKGROUND : Aortic-root dissection is the leading cause of death in Marfan's syndrome. Studies suggest that with regard to slowing aortic-root enlargement, losartan may be more effective than beta-blockers, the current standard therapy in most centers. METHODS : We conducted a randomized trial comparing losartan with atenolol in children and young adults with Marfan's syndrome. The primary outcome was the rate of aortic-root enlargement, expressed as the change in the maximum aortic-root-diameter z score indexed to body-surface area (hereafter, aortic-root z score) over a 3-year period. Secondary outcomes included the rate of change in the absolute diameter of the aortic root; the rate of change in aortic regurgitation; the time to aortic dissection, aortic-root surgery, or death; somatic growth; and the incidence of adverse events. RESULTS : From January 2007 through February 2011, a total of 21 clinical centers enrolled 608 participants, 6 months to 25 years of age (mean [+/- SD] age, 11.5 +/- 6.5 years in the atenolol group and 11.0 +/- 6.2 years in the losartan group), who had an aorticroot z score greater than 3.0. The baseline-adjusted rate of change (+/- SE) in the aortic-root z score did not differ significantly between the atenolol group and the losartan group (-0.139 +/- 0.013 and -0.107 +/- 0.013 standard-deviation units per year, respectively; P = 0.08). Both slopes were significantly less than zero, indicating a decrease in the degree of aortic-root dilatation relative to body-surface area with either treatment. The 3-year rates of aortic-root surgery, aortic dissection, death, and a composite of these events did not differ significantly between the two treatment groups. CONCLUSIONS : Among children and young adults with Marfan's syndrome who were randomly assigned to losartan or atenolol, we found no significant difference in the rate of aorticroot dilatation between the two treatment groups over a 3-year period

    Quantum-fluctuation-induced collisions and subsequent excitation gap of an elastic string between walls

    Full text link
    An elastic string embedded between rigid walls is simulated by means of the density-matrix renormalization group. The string collides against the walls owing to the quantum-mechanical zero-point fluctuations. Such ``quantum entropic'' interaction has come under thorough theoretical investigation in the context of the stripe phase observed experimentally in doped cuprates. We found that the excitation gap opens in the form of exponential singularity DeltaE ~ exp(-Ad^sigma) (d: wall spacing) with the exponent sigma =0.6(3), which is substantially smaller than the meanfield value sigma=2. That is, the excitation gap is much larger than that anticipated from meanfield, suggesting that the string is subjected to robust pinning potential due to the quantum collisions. This feature supports Zaanen's ``order out of disorder'' mechanism which would be responsible to the stabilization of the stripe phase

    Enhanced stability of the square lattice of a classical bilayer Wigner crystal

    Full text link
    The stability and melting transition of a single layer and a bilayer crystal consisting of charged particles interacting through a Coulomb or a screened Coulomb potential is studied using the Monte-Carlo technique. A new melting criterion is formulated which we show to be universal for bilayer as well as for single layer crystals in the case of (screened) Coulomb, Lennard--Jones and 1/r^{12} repulsive inter-particle interactions. The melting temperature for the five different lattice structures of the bilayer Wigner crystal is obtained, and a phase diagram is constructed as a function of the interlayer distance. We found the surprising result that the square lattice has a substantial larger melting temperature as compared to the other lattice structures. This is a consequence of the specific topology of the defects which are created with increasing temperature and which have a larger energy as compared to the defects in e.g. a hexagonal lattice.Comment: Accepted for publication in Physical Review

    Fitting the integrated Spectral Energy Distributions of Galaxies

    Full text link
    Fitting the spectral energy distributions (SEDs) of galaxies is an almost universally used technique that has matured significantly in the last decade. Model predictions and fitting procedures have improved significantly over this time, attempting to keep up with the vastly increased volume and quality of available data. We review here the field of SED fitting, describing the modelling of ultraviolet to infrared galaxy SEDs, the creation of multiwavelength data sets, and the methods used to fit model SEDs to observed galaxy data sets. We touch upon the achievements and challenges in the major ingredients of SED fitting, with a special emphasis on describing the interplay between the quality of the available data, the quality of the available models, and the best fitting technique to use in order to obtain a realistic measurement as well as realistic uncertainties. We conclude that SED fitting can be used effectively to derive a range of physical properties of galaxies, such as redshift, stellar masses, star formation rates, dust masses, and metallicities, with care taken not to over-interpret the available data. Yet there still exist many issues such as estimating the age of the oldest stars in a galaxy, finer details ofdust properties and dust-star geometry, and the influences of poorly understood, luminous stellar types and phases. The challenge for the coming years will be to improve both the models and the observational data sets to resolve these uncertainties. The present review will be made available on an interactive, moderated web page (sedfitting.org), where the community can access and change the text. The intention is to expand the text and keep it up to date over the coming years.Comment: 54 pages, 26 figures, Accepted for publication in Astrophysics & Space Scienc

    Dilepton mass spectra in p+p collisions at sqrt(s)= 200 GeV and the contribution from open charm

    Get PDF
    The PHENIX experiement has measured the electron-positron pair mass spectrum from 0 to 8 GeV/c^2 in p+p collisions at sqrt(s)=200 GeV. The contributions from light meson decays to e^+e^- pairs have been determined based on measurements of hadron production cross sections by PHENIX. They account for nearly all e^+e^- pairs in the mass region below 1 GeV/c^2. The e^+e^- pair yield remaining after subtracting these contributions is dominated by semileptonic decays of charmed hadrons correlated through flavor conservation. Using the spectral shape predicted by PYTHIA, we estimate the charm production cross section to be 544 +/- 39(stat) +/- 142(syst) +/- 200(model) \mu b, which is consistent with QCD calculations and measurements of single leptons by PHENIX.Comment: 375 authors from 57 institutions, 18 pages, 4 figures, 2 tables. Submitted to Physics Letters B. v2 fixes technical errors in matching authors to institutions. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm
    corecore