100 research outputs found

    Linear in-plane magnetoconductance and spin susceptibility of a 2D electron gas on a vicinal silicon surface

    Full text link
    In this work we have studied the parallel magnetoresistance of a 2DEG near a vicinal silicon surface. An unusual, linear magnetoconductance is observed in the fields up to B=15B = 15 T, which we explain by the effect of spin olarization on impurity scattering. This linear magnetoresistance shows strong anomalies near the boundaries of the minigap in the electron spectrum of the vicinal system.Comment: (accepted to Phys. Rev. B

    First Results from the DRIFT-IIa Dark Matter Detector

    Get PDF
    Data from the DRIFT-IIa directional dark matter experiment are presented, collected during a near continuous 6 month running period. A detailed calibration analysis comparing data from gamma-ray, x-ray and neutron sources to a GEANT4 Monte Carlo simulations reveals an efficiency for detection of neutron induced recoils of 94+/-2(stat.)+/-5(sys.)%. Software-based cuts, designed to remove non-nuclear recoil events, are shown to reject 60Co gamma-rays with a rejection factor of better than 8x10-6 for all energies above threshold. An unexpected event population has been discovered and is shown here to be due to the alpha-decay of 222Rn daughter nuclei that have attached to the central cathode. A limit on the flux of neutrons in the Boulby Underground Laboratory is derived from analysis of unshielded and shielded data.Comment: 43 pages, 14 figures, submitted to Astroparticle Physic

    Track Reconstruction and Performance of DRIFT Directional Dark Matter Detectors using Alpha Particles

    Get PDF
    First results are presented from an analysis of data from the DRIFT-IIa and DRIFT-IIb directional dark matter detectors at Boulby Mine in which alpha particle tracks were reconstructed and used to characterise detector performance--an important step towards optimising directional technology. The drift velocity in DRIFT-IIa was [59.3 +/- 0.2 (stat) +/- 7.5 (sys)] m/s based on an analysis of naturally-occurring alpha-emitting background. The drift velocity in DRIFT-IIb was [57 +/- 1 (stat) +/- 3 (sys)] m/s determined by the analysis of alpha particle tracks from a Po-210 source. 3D range reconstruction and energy spectra were used to identify alpha particles from the decay of Rn-222, Po-218, Rn-220 and Po-216. This study found that (22 +/- 2)% of Po-218 progeny (from Rn-222 decay) are produced with no net charge in 40 Torr CS2. For Po-216 progeny (from Rn-220 decay) the uncharged fraction is (100 +0 -35)%.Comment: 27 pages, 12 figures, 5 tables. Submitted to Nuclear Instruments and Methods in Physics Research, Section A. Subj-class: Instrumentation and Detector

    Triplet Pairing in Neutron Matter

    Get PDF
    The separation method developed earlier by us [Nucl. Phys. {\bf A598} 390 (1996)] to calculate and analyze solutions of the BCS gap equation for 1^1S0_0 pairing is extended and applied to 3^3P2_2--3^3F2_2 pairing in pure neutron matter. The pairing matrix elements are written as a separable part plus a remainder that vanishes when either momentum variable is on the Fermi surface. This decomposition effects a separation of the problem of determining the dependence of the gap components in a spin-angle representation on the magnitude of the momentum (described by a set of functions independent of magnetic quantum number) from the problem of determining the dependence of the gap on angle or magnetic projection. The former problem is solved through a set of nonsingular, quasilinear integral equations, providing inputs for solution of the latter problem through a coupled system of algebraic equations for a set of numerical coefficients. An incisive criterion is given for finding the upper critical density for closure of the triplet gap. The separation method and its development for triplet pairing exploit the existence of a small parameter, given by a gap-amplitude measure divided by the Fermi energy. The revised BCS equations admit analysis revealing universal properties of the full set of solutions for 3^3P2_2 pairing in the absence of tensor coupling, referring especially to the energy degeneracy and energetic order of these solutions. The angle-average approximation introduced by Baldo et al. is illuminated in terms of the separation-transformed BCS problem and the small parameter expansion..

    Measurement of the Range Component Directional Signature in a DRIFT-II Detector using 252Cf Neutrons

    Full text link
    The DRIFT collaboration utilizes low pressure gaseous detectors to search for WIMP dark matter with directional signatures. A 252Cf neutron source was placed on each of the principal axes of a DRIFT detector in order to test its ability to measure directional signatures from the three components of very low energy (~keV/amu) recoil ranges. A high trigger threshold and the event selection procedure ensured that only sulfur recoils were analyzed. Sulfur recoils produced in the CS2 target gas by the 252Cf source closely match those expected from massive WIMP induced sulfur recoils. For each orientation of the source a directional signal from the range components was observed, indicating that the detector is directional along all 3 axes. An analysis of these results yields an optimal orientation for DRIFT detectors when searching for a directional signature from WIMPs. Additional energy dependent information is provided to aid in understanding this effect.Comment: 14 pages, 1 Table, 8 Figure

    Immunology of multiple sclerosis

    Get PDF
    Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS) leading to demyelination, axonal damage, and progressive neurologic disability. The development of MS is influenced by environmental factors, particularly the Epstein-Barr virus (EBV), and genetic factors, which include specific HLA types, particularly DRB1*1501-DQA1*0102-DQB1*0602, and a predisposition to autoimmunity in general. MS patients have increased circulating T-cell and antibody reactivity to myelin proteins and gangliosides. It is proposed that the role of EBV is to infect autoreactive B cells that then seed the CNS and promote the survival of autoreactive T cells there. It is also proposed that the clinical attacks of relapsing-remitting MS are orchestrated by myelin-reactive T cells entering the white matter of the CNS from the blood, and that the progressive disability in primary and secondary progressive MS is caused by the action of autoantibodies produced in the CNS by ­meningeal lymphoid follicles with germinal centers

    In Vitro and in Vivo Inhibition of the Mycobacterium tuberculosis Phosphopantetheinyl Transferase PptT by Amidinoureas

    Get PDF
    A newly validated target for tuberculosis treatment is phosphopantetheinyl transferase, an essential enzyme that plays a critical role in the biosynthesis of cellular lipids and virulence factors in Mycobacterium tuberculosis. The structure-activity relationships of a recently disclosed inhibitor, amidinourea (AU) 8918 (1), were explored, focusing on the biochemical potency, determination of whole-cell on-target activity for active compounds, and profiling of selective active congeners. These studies show that the AU moiety in AU 8918 is largely optimized and that potency enhancements are obtained in analogues containing a para-substituted aromatic ring. Preliminary data reveal that while some analogues, including 1, have demonstrated cardiotoxicity (e.g., changes in cardiomyocyte beat rate, amplitude, and peak width) and inhibit Cav1.2 and Nav1.5 ion channels (although not hERG channels), inhibition of the ion channels is largely diminished for some of the para-substituted analogues, such as 5k (p-benzamide) and 5n (p-phenylsulfonamide)

    Tides in colliding galaxies

    Full text link
    Long tails and streams of stars are the most noticeable upshots of galaxy collisions. Their origin as gravitational, tidal, disturbances has however been recognized only less than fifty years ago and more than ten years after their first observations. This Review describes how the idea of galactic tides emerged, in particular thanks to the advances in numerical simulations, from the first ones that included tens of particles to the most sophisticated ones with tens of millions of them and state-of-the-art hydrodynamical prescriptions. Theoretical aspects pertaining to the formation of tidal tails are then presented. The third part of the review turns to observations and underlines the need for collecting deep multi-wavelength data to tackle the variety of physical processes exhibited by collisional debris. Tidal tails are not just stellar structures, but turn out to contain all the components usually found in galactic disks, in particular atomic / molecular gas and dust. They host star-forming complexes and are able to form star-clusters or even second-generation dwarf galaxies. The final part of the review discusses what tidal tails can tell us (or not) about the structure and content of present-day galaxies, including their dark components, and explains how tidal tails may be used to probe the past evolution of galaxies and their mass assembly history. On-going deep wide-field surveys disclose many new low-surface brightness structures in the nearby Universe, offering great opportunities for attempting galactic archeology with tidal tails.Comment: 46 pages, 13 figures, Review to be published in "Tidal effects in Astronomy and Astrophysics", Lecture Notes in Physics. Comments are most welcom

    ATLAS detector and physics performance: Technical Design Report, 1

    Get PDF
    • …
    corecore