23 research outputs found

    Signs of interaction of the NGC 1275 nucleus with the high-velocity system according to 0.7 sec seeing observations

    Get PDF
    The nucleus of the Seyfert galaxy NGC 1275 was observed in the B system on 1 December 1989 with seeing 0, 7 seconds using the Zeiss-1000 telescope on Mount Majdanak in Central Asia. Special methods of processing reveal low-contrast details. The nucleus and circumnucleus are stretched in NW-SE direction. There are two narrow filaments near the nucleus in position angles roughly 340 degrees and 320 degrees. The first is directed near the radio jet of the nucleus, the second has broken details curved to the NW or toward the high-velocity system of NGC 1275

    Q2237+0305 source structure and dimensions from light curves simulation

    Full text link
    Assuming a two-component quasar structure model consisting of a central compact source and an extended outer feature, we produce microlensing simulations for a population of star-like objects in the lens galaxy. Such a model is a simplified version of that adopted to explain the brightness variations observed in Q0957 (Schild & Vakulik 2003). The microlensing light curves generated for a range of source parameters were compared to the light curves obtained in the framework of the OGLE program. With a large number of trials we built, in the domain of the source structure parameters, probability distributions to find "good" realizations of light curves. The values of the source parameters which provide the maximum of the joint probability distribution calculated for all the image components, have been accepted as estimates for the source structure parameters. The results favour the two-component model of the quasar brightness structure over a single compact central source model, and in general the simulations confirm the Schild-Vakulik model that previously described successfully the microlensing and other properties of Q0957. Adopting 3300 km/s for the transverse velocity of the source, the effective size of the central source was determined to be about 2x10^15 cm, and Epsilon =2 was obtained for the ratio of the integral luminosity of the outer feature to that of the central source.Comment: 7 pages, 4 figures, LaTe

    Color Effects Associated with the 1999 Microlensing Brightness Peaks in Gravitationally Lensed Quasar Q2237+0305

    Full text link
    Photometry of the Q2237+0305gravitational lens in VRI spectral bands with the 1.5-m telescope of the high-altitude Maidanak observatory in 1995-2000 is presented. Monitoring of Q2237+0305 in July-October 2000, made at nearly daily basis, did not reveal rapid (night-to-night and intranight) variations of brightness of the components during this time period. Rather slow changes of magnitudes of the components were observed, such as 0.08 mag fading of B and C components and 0.05 mag brightening of D in R band during July 23 - October 7, 2000. By good luck three nights in 1999 were almost at the time of the strong brightness peak of image C, and approximately in the middle of the ascending slope of the image A brightness peak. The C component was the most blue one in the system in 1998 and 1999, having changed its (V-I) color from 0.56 mag to 0.12 mag since August 1997, while its brightness increased almost 1.2 mag during this time period. The A component behaved similarly between August 1998 and August 2000, having become 0.47 mag brighter in R, and at the same time, 0.15 mag bluer. A correlation between the color variations and variations of magnitudes of the components is demonstrated to be significant and reaches 0.75, with a regression line slope of 0.33. A color (V-I) vrs color (V-R) plot shows the components settled in a cluster, stretched along a line with a slope of 1.31. Both slopes are noticeably smaller than those expected if a standard galactic interstellar reddening law were responsible for the differences between the colors of images and their variations over time. We attribute the brightness and color changes to microlensing of the quasar's structure, which we conclude is more compact at shorter wavelengths, as predicted by most quasar models featuring an energizing central source.Comment: 14 pages, 7 figures, LaTeX, submitted to A&

    Time delays in PG1115+080: new estimates

    Full text link
    We report new estimates of the time delays in the quadruple gravitationally lensed quasar PG1115+080, obtained from the monitoring data in filter R with the 1.5-m telescope at the Maidanak Mountain (Uzbekistan, Central Asia) in 2004-2006. The time delays are 16.4 days between images C and B, and 12 days between C and A1+A2, with image C being leading for both pairs. The only known estimates of the time delays in PG1115 are those based on observations by Schechter et al. (1997) -- 23.7 and 9.4 days between images C and B, C and A1+A2, respectively, as calculated by Schechter et al., and 25 and 13.3 days as revised by Barkana (1997) for the same image components with the use of another method. The new values of time delays in PG 1115+080 may be expected to provide larger estimates of the Hubble constant thus decreasing a diversity between the H_0 estimates taken from gravitationally lensed quasars and with other methods.Comment: 5 pages, 2 figures, Accepted for publication in MNRAS Letter

    Time delay between images of the lensed quasar UM673

    Full text link
    We study brightness variations in the double lensed quasar UM673 (Q0142-100) with the aim of measuring the time delay between its two images. In the paper we combine our previously published observational data of UM673 obtained during the 2003 - 2005 seasons at the Maidanak Observatory with archival and recently observed Maidanak and CTIO UM673 data. We analyze the V, R and I-band light curves of the A and B images of UM673, which cover ten observational seasons from August 2001 to November 2010. We also analyze the time evolution of the difference in magnitudes between images A and B of UM673 over more than ten years. We find that the quasar exhibits both short-term (with amplitude of \sim 0.1 mag in the R band) and high-amplitude (\sim 0.3 mag) long-term variability on timescales of about several months and several years, respectively. These brightness variations are used to constrain the time delay between the images of UM673. From cross-correlation analysis of the A and B quasar light curves and error analysis we measure the mean time delay and its error of 89 \pm11 days. Given the input time delay of 88 days, the most probable value of the delay that can be recovered from light curves with the same statistical properties as the observed R-band light curves of UM673 is 95{+5/-16}{+14/-29} days (68 and 95 % confidence intervals). Analysis of the V - I color variations and V, R and I-band magnitude differences of the quasar images does not show clear evidence of the microlensing variations between 1998 and 2010.Comment: Submitted to A&A, 11 pages, 9 figure

    PG 1115+080: variations of the A2/A1 flux ratio and new values of the time delays

    Full text link
    We report the results of our multicolor observations of PG 1115+080 with the 1.5-m telescope of the Maidanak Observatory (Uzbekistan, Central Asia) in 2001-2006. Monitoring data in filter R spanning the 2004, 2005 and 2006 seasons (76 data points) demonstrate distinct brightness variations of the source quasar with the total amplitude of almost 0.4 mag. Our R light curves have shown image C leading B by 16.4d and image (A1+A2) by 12d that is inconsistent with the previous estimates obtained by Schechter et al. in 1997 - 24.7d between B and C and 9.4d between (A1+A2) and C. The new values of time delays in PG 1115+080 must result in larger values for the Hubble constant, thus reducing difference between its estimates taken from the gravitational lenses and with other methods. Also, we analyzed variability of the A2/A1 flux ratio, as well as color changes in the archetypal "fold" lens PG 1115+080. We found the A1/A2 flux ratio to grow during 2001-2006 and to be larger at longer wavelengths. In particular, the A2/A1 flux ratio reached 0.85 in filter I in 2006. We also present evidence that both the A1 and A2 images might have undergone microlensing during 2001-2006, with the descending phase for A1 and initial phase for A2. We find that the A2/A1 flux ratio anomaly in PG 1115 can be well explained both by microlensing and by finite distance of the source quasar from the caustic fold.Comment: 14 pages, 7 figures, 8 tables, Accepted for publication in MNRA

    Around-the-clock observations of the Q0957+561A,B gravitationally lensed quasar. II. Results for the second observing season

    Get PDF
    We report on an observing campaign in 2001 March to monitor the brightness of the later arriving Q0957+561B image in order to compare with the previously published brightness observations of the (first-arriving) A image. The 12 participating observatories provided 3543 image frames, which we have analyzed for brightness fluctuations. From our classical methods for time-delay determination, we find a 417.09 ± 0.07 day time delay, which should be free of effects due to incomplete sampling. During the campaign period, the quasar brightness was relatively constant and only small fluctuations were found; we compare the structure function for the new data with structure function estimates for the 1995-1996 epoch and show that the structure function during our observing interval is unusually depressed. We also examine the data for any evidence of correlated fluctuations at zero lag. We discuss the limits of our ability to measure the cosmological time delay if the quasar's emitting surface is time resolved, as seems likely

    Speckle interferometry with the BTA telescope

    No full text
    Kuzmenkov, S. G. Speckle interferometry with the BTA telescope / V. N. Dudinov, V. V. Konichek, S. G. Kuzmenkov, V. S. Tsvetkova та інші (всього 7 осіб) // Instrum. astron. large opt. telesc. Proc. IAU Colloq. № 67, Zelenchukskaya, 1981 / Ed. C. M. Hamphries. – Dordrecht e.a., 1982. – P. 191–198
    corecore