266 research outputs found

    Space- and Time-Efficient Algorithm for Maintaining Dense Subgraphs on One-Pass Dynamic Streams

    Get PDF
    While in many graph mining applications it is crucial to handle a stream of updates efficiently in terms of {\em both} time and space, not much was known about achieving such type of algorithm. In this paper we study this issue for a problem which lies at the core of many graph mining applications called {\em densest subgraph problem}. We develop an algorithm that achieves time- and space-efficiency for this problem simultaneously. It is one of the first of its kind for graph problems to the best of our knowledge. In a graph G=(V,E)G = (V, E), the "density" of a subgraph induced by a subset of nodes SVS \subseteq V is defined as E(S)/S|E(S)|/|S|, where E(S)E(S) is the set of edges in EE with both endpoints in SS. In the densest subgraph problem, the goal is to find a subset of nodes that maximizes the density of the corresponding induced subgraph. For any ϵ>0\epsilon>0, we present a dynamic algorithm that, with high probability, maintains a (4+ϵ)(4+\epsilon)-approximation to the densest subgraph problem under a sequence of edge insertions and deletions in a graph with nn nodes. It uses O~(n)\tilde O(n) space, and has an amortized update time of O~(1)\tilde O(1) and a query time of O~(1)\tilde O(1). Here, O~\tilde O hides a O(\poly\log_{1+\epsilon} n) term. The approximation ratio can be improved to (2+ϵ)(2+\epsilon) at the cost of increasing the query time to O~(n)\tilde O(n). It can be extended to a (2+ϵ)(2+\epsilon)-approximation sublinear-time algorithm and a distributed-streaming algorithm. Our algorithm is the first streaming algorithm that can maintain the densest subgraph in {\em one pass}. The previously best algorithm in this setting required O(logn)O(\log n) passes [Bahmani, Kumar and Vassilvitskii, VLDB'12]. The space required by our algorithm is tight up to a polylogarithmic factor.Comment: A preliminary version of this paper appeared in STOC 201

    UNA MIRADA A TRAVÉS DE LAS MACROALGAS: Una lupa sumergida bajo los mares antárticos, recopilando y compartiendo el conocimiento sobre las macroalgas.

    Get PDF
    Bajo el mar antártico se esconde una vida única adaptada a condiciones extremas de temperatura y luz. Las macroalgas antárticas desempeñan un papel fundamental en la producción de oxígeno y en la absorción de dióxido de carbono de la atmósfera, contribuyendo a regular el clima global. Estas importantes productoras primarias son auténticas ingenieras del ecosistema marino, crean y modifican los hábitats y proveen refugio y protección a una variedad de organismos marinos. Se presentan aquí las diferentes líneas de investigación desarrolladas en Caleta Potter, un ecosistema marino antártico costero seriamente afectado por los fenómenos asociados al cambio global

    miR-17-5p regulates endocytic trafficking through targeting TBC1D2/ Armus

    Get PDF
    miRNA cluster miR-17-92 is known as oncomir-1 due to its potent oncogenic function. miR-17-92 is a polycistronic cluster that encodes 6 miRNAs, and can both facilitate and inhibit cell proliferation. Known targets of miRNAs encoded by this cluster are largely regulators of cell cycle progression and apoptosis. Here, we show that miRNAs encoded by this cluster and sharing the seed sequence of miR-17 exert their influence on one of the most essential cellular processes – endocytic trafficking. By mRNA expression analysis we identified that regulation of endocytic trafficking by miR-17 can potentially be achieved by targeting of a number of trafficking regulators. We have thoroughly validated TBC1D2/Armus, a GAP of Rab7 GTPase, as a novel target of miR-17. Our study reveals regulation of endocytic trafficking as a novel function of miR-17, which might act cooperatively with other functions of miR-17 and related miRNAs in health and disease

    Nature of Sonoluminescence: Noble Gas Radiation Excited by Hot Electrons in "Cold" Water

    Get PDF
    We show that strong electric fields occurring in water near the surface of collapsing gas bubbles because of the flexoelectric effect can provoke dynamic electric breakdown in a micron-size region near the bubble and consider the scenario of the SBSL. The scenario is: (i) at the last stage of incomplete collapse of the bubble the gradient of pressure in water near the bubble surface has such a value and sign that the electric field arising from the flexoelectric effect exceeds the threshold field of the dynamic electrical breakdown of water and is directed to the bubble center; (ii) mobile electrons are generated because of thermal ionization of water molecules near the bubble surface; (iii) these electrons are accelerated in ''cold'' water by the strong electric fields; (iv) these hot electrons transfer noble gas atoms dissolved in water to high-energy excited states and optical transitions between these states produce SBSL UV flashes in the trasparency window of water; (v) the breakdown can be repeated several times and the power and duration of the UV flash are determined by the multiplicity of the breakdowns. The SBSL spectrum is found to resemble a black-body spectrum where temperature is given by the effective temperature of the hot electrons. The pulse energy and some other characteristics of the SBSL are found to be in agreement with the experimental data when realistic estimations are made.Comment: 11 pages (RevTex), 1 figure (.ps

    Approximating Mexican highways with slime mould

    Full text link
    Plasmodium of Physarum polycephalum is a single cell visible by unaided eye. During its foraging behavior the cell spans spatially distributed sources of nutrients with a protoplasmic network. Geometrical structure of the protoplasmic networks allows the plasmodium to optimize transport of nutrients between remote parts of its body. Assuming major Mexican cities are sources of nutrients how much structure of Physarum protoplasmic network correspond to structure of Mexican Federal highway network? To find an answer undertook a series of laboratory experiments with living Physarum polycephalum. We represent geographical locations of major cities by oat flakes, place a piece of plasmodium in Mexico city area, record the plasmodium's foraging behavior and extract topology of nutrient transport networks. Results of our experiments show that the protoplasmic network formed by Physarum is isomorphic, subject to limitations imposed, to a network of principle highways. Ideas and results of the paper may contribute towards future developments in bio-inspired road planning

    Sonoluminescence as a QED vacuum effect. I: The Physical Scenario

    Get PDF
    Several years ago Schwinger proposed a physical mechanism for sonoluminescence in terms of changes in the properties of the quantum-electrodynamic (QED) vacuum state. This mechanism is most often phrased in terms of changes in the Casimir Energy: changes in the distribution of zero-point energies and has recently been the subject of considerable controversy. The present paper further develops this quantum-vacuum approach to sonoluminescence: We calculate Bogolubov coefficients relating the QED vacuum states in the presence of a homogeneous medium of changing dielectric constant. In this way we derive an estimate for the spectrum, number of photons, and total energy emitted. We emphasize the importance of rapid spatio-temporal changes in refractive indices, and the delicate sensitivity of the emitted radiation to the precise dependence of the refractive index as a function of wavenumber, pressure, temperature, and noble gas admixture. Although the physics of the dynamical Casimir effect is a universal phenomenon of QED, specific experimental features are encoded in the condensed matter physics controlling the details of the refractive index. This calculation places rather tight constraints on the possibility of using the dynamical Casimir effect as an explanation for sonoluminescence, and we are hopeful that this scenario will soon be amenable to direct experimental probes. In a companion paper we discuss the technical complications due to finite-size effects, but for reasons of clarity in this paper we confine attention to bulk effects.Comment: 25 pages, LaTeX 209, ReV-TeX 3.2, eight figures. Minor revisions: Typos fixed, references updated, minor changes in numerical estimates, minor changes in some figure

    An objective comparison of cell-tracking algorithms

    Get PDF
    We present a combined report on the results of three editions of the Cell Tracking Challenge, an ongoing initiative aimed at promoting the development and objective evaluation of cell segmentation and tracking algorithms. With 21 participating algorithms and a data repository consisting of 13 data sets from various microscopy modalities, the challenge displays today's state-of-the-art methodology in the field. We analyzed the challenge results using performance measures for segmentation and tracking that rank all participating methods. We also analyzed the performance of all of the algorithms in terms of biological measures and practical usability. Although some methods scored high in all technical aspects, none obtained fully correct solutions. We found that methods that either take prior information into account using learning strategies or analyze cells in a global spatiotemporal video context performed better than other methods under the segmentation and tracking scenarios included in the challenge

    Joule-heating Effects In the Amorphous Fe40ni40b20 Alloy

    Get PDF
    The effects of Joule heating on the amorphous Fe40Ni40B20 alloy are investigated by measuring the time behavior of the electrical resistance of ribbon strips during such a treatment. The structural transformations occurring in subsequent stages of the process are studied by means of x-ray-diffraction, differential-scanning-calorimetry, and magnetic-permeability measurements. A continuous evolution from a fully amorphous to a fully crystalline structure may be followed. The crystallization mechanisms observed in Joule-heated samples differ from the ones occurring under conventional heating conditions. The electrical resistance displays a bump in the course of Joule heating. A quantitative model relating such a bump to the extra heat released to the sample by fast crystallization is proposed and discussed
    corecore