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ABSTRACT
While in many graph mining applications it is crucial to han-
dle a stream of updates efficiently in terms of both time and
space, not much was known about achieving such type of
algorithm. In this paper we study this issue for a problem
which lies at the core of many graph mining applications
called densest subgraph problem. We develop an algorithm
that achieves time- and space-efficiency for this problem si-
multaneously. It is one of the first of its kind for graph
problems to the best of our knowledge.

Given an input graph, the densest subgraph is the sub-
graph that maximizes the ratio between the number of edges
and the number of nodes. For any ε > 0, our algorithm can,
with high probability, maintain a (4 + ε)-approximate solu-

tion under edge insertions and deletions using Õ(n) space

and Õ(1) amortized time per update; here, n is the number

of nodes in the graph and Õ hides the O(poly log1+ε n) term.
The approximation ratio can be improved to (2 + ε) with
more time. It can be extended to a (2 + ε)-approximation
sublinear-time algorithm and a distributed-streaming algo-
rithm. Our algorithm is the first streaming algorithm that
can maintain the densest subgraph in one pass. Prior to
this, no algorithm could do so even in the special case of an
incremental stream and even when there is no time restric-
tion. The previously best algorithm in this setting required
O(logn) passes [6]. The space required by our algorithm is
tight up to a polylogarithmic factor.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems—Computa-
tions on discrete structures; G.2.2 [Discrete Mathemat-
ics]: Graph Theory—Graph algorithms
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1. INTRODUCTION
In analyzing large-scale rapidly-changing graphs, it is cru-

cial that algorithms must use small space and adapt to the
change quickly. This is the main subject of interest in at
least two areas, namely data streams and dynamic algo-
rithms. In the context of graph problems, both areas are
interested in maintaining some graph property, such as con-
nectivity or distances, for graphs undergoing a stream of
edge insertions and deletions. This is known as the (one-
pass) dynamic semi-streaming model in the data streams
community, and as the fully-dynamic model in the dynamic
algorithm community.

The two areas have been actively studied since at least the
early 80s (e.g. [17, 32]) and have produced several sophisti-
cated techniques for achieving time and space efficiency. In
dynamic algorithms, where the primary concern is time, the
heavy use of amortized analysis has led to several extremely
fast algorithms that can process updates and answer ques-
tions in a poly-logarithmic amortized time. In data streams,
where the primary concern is space, the heavy use of sam-
pling techniques to maintain small sketches has led to algo-
rithms that require space significantly less than the input
size; in particular, for dynamic graph streams the result by
Ahn, Guha, and McGregor [1] has demonstrated the power
of linear graph sketches in the dynamic model, and initiated
an extensive study of dynamic graph streams (e.g. [25, 26,
1, 2, 3]). Despite numerous successes in these two areas, we
are not aware of many results that combine techniques from
both areas to achieve time- and space-efficiency simultane-
ously in dynamic graph streams. A notable exception we are
aware of is the connectivity problem, where one can combine
the space-efficient streaming algorithm of Ahn et al. [2] with
the fully-dynamic algorithm of Kapron et al. [27]1.

In this paper, we study this issue for the densest subgraph
problem. For any unweighted undirected graph G, the den-
sity of G is defined as ρ(G) = |E(G)|/|V (G)|. The dens-

1We thank Valerie King (private communication) for point-
ing out this fact.



est subgraph of G is the subgraph H that maximizes ρ(H),
and we denote the density of such subgraph by ρ∗(G) =
max
H⊆G

ρ(H). For any γ ≥ 1 and ρ′, we say that ρ′ is an γ-

approximate value of ρ∗(G) if ρ∗(G)/γ ≤ ρ′ ≤ ρ∗(G). The
(static) densest subgraph problem is to compute or approx-
imate ρ∗ and the corresponding subgraph. Throughout, we
use n and m to denote the number of nodes and edges in
the input graph, respectively.

This problem and its variants have been intensively stud-
ied in practical areas as it is an important primitive in an-
alyzing massive graphs. Its applications range from identi-
fying dense communities in social networks (e.g. [14, 41]),
link spam detection (e.g. [18]) and finding stories and events
(e.g. [4]); for many more applications of this problem see,
e.g., [6, 29, 40, 39]. Goldberg [20] was one of the first to
study this problem although the notion of graph density has
been around much earlier (e.g. [28, Chapter 4]). His algo-
rithm can solve this problem in polynomial time by using
O(logn) flow computations. Later Gallo, Grigoriadis and
Tarjan slightly improved the running time using paramet-
ric maximum flow computation. These algorithms are, how-
ever, not very practical, and an algorithm that is more popu-
lar in practice is an O(m)-time O(m)-space 2-approximation
algorithm of Charikar [10]. However, as mentioned earlier,
graphs arising in modern applications are huge and keep
changing. This algorithm is not suitable to handle such
graphs. Consider, for example, an application of detect-
ing a dense community in social networks. Since people can
make new friends as well as “unfriend” their old friends, the
algorithm must be able to process these updates efficiently.
With this motivation, it is natural to consider the dynamic
version of this problem. To be precise, we define the problem
following the dynamic algorithms literature as follows. We
say that an algorithm is a fully-dynamic γ-approximation
algorithm for the densest subgraph problem if it can process
the following operations.
• Initialize(n): Initialize the algorithm with an empty
n-node graph.
• Insert(u, v): Insert edge (u, v) to the graph.
• Delete(u, v): Delete edge (u, v) from the graph.
• QueryValue: Output a γ-approximate value of ρ∗(G).2

The space complexity of an algorithm is defined to be the
space needed in the worst case. We define time complexity
separately for each type of operations: Time for the Initial-
ize operation is called preprocessing time, time to process
each Insert and Delete operation is called update time,
time for answering each Query operation is called query
time. For any τ , we say that an algorithm has an amortized
update time τ if the total time it needs to process any k
insert and delete operations is at most kτ .

Our Results. Our main result is an efficient (4 + ε)-
approximation algorithm for this problem, formally stated
as follows. For every integer t ≥ 0, let G(t) = (V,E(t)) be
the state of the input graph G = (V,E) just after we have
processed the first t updates in the dynamic stream, and de-
fine m(t) ← |E(t)|. We assume that m(0) = 0 and m(t) > 0

for all t ≥ 1. Let Opt(t) denote the density of the densest
subgraph in G(t).

2We note that we can also quickly return the subgraph
whose density γ-approximates ρ∗(G).

Theorem 1.1. Fix some small constant ε ∈ (0, 1), a con-
stant λ > 1, and let T = dnλe. There is an algorithm that
processes the first T updates in the dynamic stream using
Õ(n) space and maintains a value Output(t) at each t ∈ [T ].
The algorithm gives the following guarantees with high prob-
ability: We have Opt(t)/(4 + O(ε)) ≤ Output(t) ≤ Opt(t)

for all t ∈ [T ]. Further, the total amount of computation per-
formed while processing the first T updates in the dynamic
stream is O(T poly logn).

We note that our algorithm can be easily extended to out-
put the set of nodes in the subgraph whose density (4 + ε)-
approximates ρ∗(G) using O(1) time per node. As a by
product of our techniques, we obtain some additional re-
sults. See the full version of our work [7] for details.

• A (2 + ε)-approximation one-pass dynamic semi-
streaming algorithm: This follows from the fact that
with the same space, preprocessing time, and update time,
and an additional Õ(n) query time, our main algorithm can
output a (2 + ε)-approximate solution. See Section 3.

• Sublinear-time algorithm: We show that Charikar’s
linear-time linear-space algorithm can be improved further!
In particular, if the graph is represented by an incident list
(this is a standard representation [11, 19]), our algorithm

needs to read only Õ(n) edges in the graph (even if the

graph is dense) and requires Õ(n) time to output a (2 + ε)-
approximate solution. We also provide a lower bound that
matches this running time up to a poly-logarithmic factor.
See [7, Appendix A] for details.

• Distributed streaming algorithm: In the distributed
streaming setting with k sites as defined in [12], we can com-

pute a (2 + ε)-approximate solution with Õ(k + n) commu-
nication by employing the algorithm of Cormode et al. [12].
[7, Appendix B] for details.

To the best of our knowledge, our main algorithm is the
first dynamic graph algorithm that requires Õ(n) space (in
other words, a dynamic semi-streaming algorithm) and at
the same time can quickly process each update and answer
each query. Previously, there was no space-efficient algo-
rithm known for this problem, even when time efficiency is
not a concern, and even in the conventional streaming model
where there are only edge insertions. In this insertion-only
model, Bahmani, Kumar, and Vassilvitskii [6] provided a
deterministic (2 + ε)-approximation O(n)-space algorithm.
Their algorithm needs O(log1+ε n) passes; i.e., it has to
read through the sequence of edge insertions O(log1+ε n)
times. (Their algorithm was also extended to a MapReduce
algorithm, which was later improved by [5].) Our (2 + ε)-
approximation dynamic streaming algorithm improves this
algorithm in terms of the number of passes. The space usage
of our dynamic algorithms matches the lower bound pro-
vided by [6, Lemma 7] up to a polylogarithmic factor.

We note that while in some settings it is reasonable to
compute the solution at the end of the stream or even make
multiple passes (e.g. when the graph is kept on an exter-
nal memory), and thus our and Bahmani et al’s (2 + ε)-
approximation algorithms are sufficient in these settings,
there are many natural settings where the stream keeps
changing, e.g. social networks where users keep making new
friends and disconnecting from old friends. In the latter case
our main algorithm is necessary since it can quickly prepare
to answer the densest subgraph query after every update.



Another related result in the streaming setting is by Ahn
et al. [2] which approximates the fraction of some dense
subgraphs such as a small clique in dynamic streams. This
algorithm does not solve the densest subgraph problem but
might be useful for similar applications.

Not much was known about time-efficient algorithm for
this problem even when space efficiency is not a concern.
One possibility is to adapt dynamic algorithms for the re-
lated problem called dynamic arboricity. The arboricity of
a graph G is α(G) = maxU⊆V (G) |E(U)|/(|U | − 1) where
E(U) is the subgraph of G induced by U . Observe that
ρ∗(G) ≤ α(G) ≤ 2ρ∗(G). Thus, a γ-approximation for the
arboricity problem will be a (2γ)-approximation algorithm.
In particular, we can use the 4-approximation algorithm of
Brodal and Fagerberg [8] to maintain an 8-approximate so-

lution to the densest subgraph problem in Õ(1) amortized
update time. (With a little more thought, one can in fact
improve the approximation ratio to 6.) In the paper that ap-
peared at about the same time as this paper, Epasto et al.
[15] presented a (2 + ε)-approximation algorithm which can
handle arbitrary edge insertions and random edge deletions.

Overview. An intuitive way to combine techniques from
data streams and dynamic algorithms for any problem is
to run the dynamic algorithm using the sketch produced
by the streaming algorithm as an input. This idea does
not work straightforwardly. The first obvious issue is that
the streaming algorithm might take excessively long time to
maintain its sketch and the dynamic algorithm might require
an excessively large additional space. A more subtle issue is
that the sketch might need to be processed in a specific way
to recover a solution, and the dynamic algorithm might not
be able to facilitate this. As an extreme example, imagine
that the sketch for our problem is not even a graph; in this
case, we cannot even feed this sketch to a dynamic algorithm
as an input.

The key idea that allows us to get around this difficulty
is to develop streaming and dynamic algorithms based on
the same structure called (α, d, L)-decomposition. This
structure is an extension of a concept called d-core, which
was studied in graph theory since at least the 60s (e.g., [16,
30, 38]) and has played an important role in the studies of
the densest subgraph problem (e.g., [6, 37]). The d-core of
a graph is its (unique) largest induced subgraph with ev-
ery node having degree at least d. It can be computed by
repeatedly removing nodes of degree less than d from the
graph, and can be used to 2-approximate the densest sub-
graph. Our (α, d, L)-decomposition with parameter α ≥ 1 is
an approximate version of this process where we repeatedly
remove nodes of degree “approximately” less than d: in this
decomposition we must remove all nodes of degree less than
d and are allowed to remove some nodes of degree between
d and αd. We will repeat this process for L iterations. Note
that the (α, d, L)-decomposition of a graph is not unique.
However, for L = O(log1+ε n), an (α, d, L)-decomposition

can be use to 2α(1 + ε)2-approximate the densest subgraph.
We explain this concept in detail in Section 2.

We show that this concept can be used to obtain an ap-
proximate solution to the densest subgraph problem and
leads to both a streaming algorithm with a small sketch and
a dynamic algorithm with small amortized update time. In
particular, it is intuitive that to check if a node has degree
approximately d, it suffices to sample every edge with prob-
ability roughly 1/d. The value of d that we are interested

in approximately ρ∗, which can be shown to be roughly the
same as the average degree of the graph. Using this fact,
it follows almost immediately that we only have to sample
Õ(n) edges. Thus, to repeatedly remove nodes for L iter-

ations, we will need to sample Õ(Ln) = Õ(n) edges (we
need to sample a new set of edges in every iteration to avoid
dependencies).

We turn the (α, d, L)-decomposition concept into a dy-
namic algorithm by dynamically maintaining the sets of
nodes removed in each of the L iterations, called levels. Since
the (α, d, L)-decomposition gives us a choice whether to keep
or remove each node of degree between d and αd, we can
save time needed to maintain this decomposition by moving
nodes between levels only when it is necessary. If we allow
α to be large enough, nodes will not be moved often and
we can obtain a small amortized update time; in particular,
it can be shown that the amortized update time is Õ(1) if
α ≥ 2 + ε. In analyzing an amortized time, it is usually
tricky to come up with the right potential function that can
keep track of the cost of moving nodes between levels, which
is not frequent but expensive. In case of our algorithm, we
define two potential functions for our amortized analysis,
one on nodes and one on edges. (For intuition, we provide
an analysis for the simpler case where we run this dynamic
algorithm directly on the input graph in [7].)

Our goal is to run the dynamic algorithm on top of the
sketch maintained by our streaming algorithm in order to
maintain the (α, d, L)-decomposition. To do this, there are
a few issues we have to deal with that makes the analysis
rather complicated: Recall that in the sketch we maintain
L sets of sampled edges, and for each of the L iterations
we use different such sets to determine which nodes to re-
move. This causes the potential functions and its analysis
to be even more complicated since whether a node should
be moved from one level to another depends on its degree
in one set, but the cost of moving such node depends on
its degree in other sets as well. The analysis fortunately
goes through (intuitively because all sets are sampled from
the same graph and so their degree distributions are close
enough). We explain our algorithm and how to analysis it
in details in Section 4.

Notation. For any graph G = (V,E), let Nv = {u ∈ V :
(u, v) ∈ E} and Dv = |Nv| respectively denote the set of
neighbors and the degree of a node v ∈ V . Let G(S) denote
the subgraph of G induced by the nodes in S ⊆ V . Given
any two subsets S ⊆ V,E′ ⊆ E, define Nu(S,E′) = {v ∈
Nu ∩ S : (u, v) ∈ E′} and Du(S,E′) = |Nu(S,E′)|. To ease
notation, we write Nu(S) and Du(S) instead of Nu(S,E)
and Du(S,E). For a nonempty subset S ⊆ V , its density
and average degree are defined as ρ(S) = |E(S)|/|S| and
δ(S) =

∑
v∈S Dv(S)/|S| respectively. Note that δ(S) =

2 · ρ(S).

2. (α,D,L)-DECOMPOSITION
Our (α, d, L)-decomposition is formally defined as follows.

Definition 2.1. Fix any α ≥ 1, d ≥ 0, and any posi-
tive integer L. Consider a family of subsets Z1 ⊇ · · · ⊇
ZL. The tuple (Z1, . . . , ZL) is an (α, d, L)-decomposition
of the input graph G = (V,E) iff Z1 = V and, for every
i ∈ [L − 1], we have Zi+1 ⊇ {v ∈ Zi : Dv(Zi) > αd} and
Zi+1 ∩ {v ∈ Zi : Dv(Zi) < d} = ∅.



Given an (α, d, L)-decomposition (Z1, . . . , ZL), we define
Vi = Zi \ Zi+1 for all i ∈ [L − 1], and Vi = Zi for i =
L. We say that the nodes in Vi constitute the ith level
of this decomposition. We also denote the level of a node
v ∈ V by `(v). Thus, we have `(v) = i whenever v ∈ Vi.
The following theorem and its immediate corollary will play
the main role in the rest of the paper. Roughly speaking,
they state that we can use the (α, d, L)-decomposition to
2α(1+ε)2-approximate the densest subgraph by setting L =
O(logn/ε) and trying different values of d in powers of (1+ε).

Theorem 2.2. Fix any α ≥ 1, d ≥ 0, ε ∈ (0, 1), L ←
2 + dlog(1+ε) ne. Let d∗ ← maxS⊆V ρ(S) be the maximum
density of any subgraph in G = (V,E), and let (Z1, . . . , ZL)
be an (α, d, L)-decomposition of G = (V,E). We have

• (1) If d > 2(1 + ε)d∗, then ZL = ∅.
• (2) Else if d < d∗/α, then ZL 6= ∅ and there is an index
j ∈ {1, . . . , L− 1} such that ρ(Zj) ≥ d/(2(1 + ε)).

Corollary 2.3. Fix α, ε, L, d∗ as in Theorem 2.2. Let
π, σ > 0 be any two numbers satisfying α·π < d∗ < σ/(2(1+
ε)). Discretize the range [π, σ] into powers of (1 + ε), by
defining dk ← (1+ε)k−1 ·π for every k ∈ [K], where K is any
integer strictly greater than dlog(1+ε) (σ/π)e. For every k ∈
[K], construct an (α, dk, L)-decomposition (Z1(k), . . . , ZL(k))
of G = (V,E). Let k′ ← max{k ∈ [K] : ZL(k) 6= ∅}. Then
we have the following guarantees:

• d∗/(α(1 + ε)) ≤ dk′ ≤ 2(1 + ε) · d∗.
• There exists an index j′ ∈ {1, . . . , L − 1} such that
ρ(Zj′(k

′)) ≥ dk′/(2(1 + ε)).

We will use the above corollary as follows. Since K =
O(log1+ε n), it is not hard to maintain k′ and the set of
nodes Zj′(k

′). The corollary guarantees that the density of
the set of nodes Zj′(k

′) is (2α(1 + ε)2)-approximation to d∗.
The next lemma relates the density to the minimum de-

gree. Its proof can be found in the full version.

Lemma 2.4. Let S∗ ⊆ V be a subset of nodes with max-
imum density, i.e., ρ(S∗) ≥ ρ(S) for all S ⊆ V . Then
Dv(S∗) ≥ ρ(S∗) for all v ∈ S∗. Thus, the degree of each
node in G(S∗) is at least the density of S∗.

Proof of Theorem 2.2. (1) Suppose that d > 2(1 +
ε)d∗. Consider any level i ∈ [L − 1], and note that δ(Zi) =
2 · ρ(Zi) ≤ 2 · maxS⊆V ρ(S) = 2d∗ < d/(1 + ε). It follows
that the number of nodes v in G(Zi) with degree Dv(Zi) ≥ d
is less than |Zi|/(1 + ε), as otherwise δ(Zi) ≥ d/(1 + ε).
Let us define the set Ci = {v ∈ Zi : Dv(Zi) < d}. We
have |Zi \ Ci| ≤ |Zi|/(1 + ε). Now, from Definition 2.1 we
have Zi+1 ∩ Ci = ∅, which, in turn, implies that |Zi+1| ≤
|Zi \ Ci| ≤ |Zi|/(1 + ε). Thus, for all i ∈ [L − 1], we have
|Zi+1| ≤ |Zi|/(1 + ε). Multiplying all these inequalities, for
i = 1 to L − 1, we conclude that |ZL| ≤ |Z1|/(1 + ε)L−1.
Since |Z1| = |V | = n and L = 2 + dlog(1+ε) ne, we get

|ZL| ≤ n/(1 + ε)(1+log(1+ε) n) < 1. This can happen only if
ZL = ∅.

(2) Suppose that d < d∗/α, and let S∗ ⊆ V be a subset of
nodes with highest density, i.e., ρ(S∗) = d∗. We will show
that S∗ ⊆ Zi for all i ∈ {1, . . . , L}. This will imply that
ZL 6= ∅. Clearly, we have S∗ ⊆ V = Z1. By induction
hypothesis, assume that S∗ ⊆ Zi for some i ∈ [L − 1]. We
show that S∗ ⊆ Zi+1. By Lemma 2.4, for every node v ∈ S∗,

we have Dv(Zi) ≥ Dv(S∗) ≥ ρ(S∗) = d∗ > αd. Hence, from
Definition 2.1, we get v ∈ Zi+1 for all v ∈ S∗. This implies
that S∗ ⊆ Zi+1.

Next, we will show that if d < d∗/α, then there is an
index j ∈ {1, . . . , L− 1} such that ρ(Zj) ≥ d/(2(1 + ε)). For
the sake of contradiction, suppose that this is not the case.
Then we have d < d∗/α and δ(Zi) = 2 · ρ(Zi) < d/(1 + ε)
for every i ∈ {1, . . . , L − 1}. Then, applying an argument
similar to case (1), we conclude that |Zi+1| ≤ |Zi|/(1+ε) for
every i ∈ {1, . . . , L − 1}, which implies that ZL = ∅. Thus,
we arrive at a contradiction.

3. WARMUP: A SINGLE PASS STREAMING
ALGORITHM

In this section, we present a single-pass streaming algo-
rithm for maintaining a (2 + ε)-approximate solution to the
densest subgraph problem. The algorithm handles a dy-
namic (turnstile) stream of edge insertions/deletions in Õ(n)
space. In particular, we do not worry about the update time
of our algorithm. Our main result in this section is summa-
rized in Theorem 3.1.

Theorem 3.1. We can process a dynamic stream of up-
dates in the graph G in Õ(n) space, and with high probability
return a (2 + O(ε))-approximation of d∗ = maxS⊆V ρ(S) at
the end of the stream.

Throughout this section, we fix a small constant ε ∈ (0, 1/2)
and a sufficiently large constant c > 1. Moreover, we set
α ← (1 + ε)/(1 − ε), L ← 2 + dlog(1+ε) ne. The main tech-
nical lemma is below and states that we can construct a
(α, d, L)-decomposition by sampling Õ(n) edges.

Lemma 3.2. Fix an integer d > 0, and let S be a col-
lection of (cm(L− 1) logn)/d mutually independent random
samples (each consisting of one edge) from the edge-set E
of the input graph G = (V,E). With high probability we can
construct from S an (α, d, L)-decomposition (Z1, . . . , ZL) of

G, using only Õ((n+m/d)) bits of space.

Proof. We partition the samples in S evenly among (L−
1) groups {Si} , i ∈ [L − 1]. Thus, each Si is a collection
of (cm logn)/d mutually independent random samples from
the edge-set E, and, furthermore, the collections {Si} , i ∈
[L−1], themselves are mutually independent. Our algorithm
works as follows.

• Set Z1 ← V .

• For i = 1 to (L−1): Set Zi+1 ← {v ∈ Zi : Dv(Zi, Si) ≥
(1− ε)αc logn}.

To analyze the correctness of the algorithm, define the (ran-
dom) sets Ai = {v ∈ Zi : Dv(Zi, E) > αd} and Bi = {v ∈
Zi : Dv(Zi, E) < d} for all i ∈ [L − 1]. Note that for all
i ∈ [L − 1], the random sets Zi, Ai, Bi are completely de-
termined by the outcomes of the samples in {Sj} , j < i. In
particular, the samples in Si are chosen independently of the
sets Zi, Ai, Bi. Let Ei be the event that (a) Zi+1 ⊇ Ai and
(b) Zi+1∩Bi = ∅. By Definition 2.1, the output (Z1, . . . , ZL)

is a valid (α, d, L)-decomposition of G iff the event
⋂L−1
i=1 Ei

occurs. Consider any i ∈ [L − 1]. Below, we show that the
event Ei occurs with high probability. The lemma follows by
taking a union bound over all i ∈ [L− 1].



Fix any instantiation of the random set Zi. Condition on
this event, and note that this event completely determines
the sets Ai, Bi. Consider any node v ∈ Ai. Let Xv,i(j) ∈
{0, 1} be an indicator random variable for the event that the
jth sample in Si is of the form (u, v), with u ∈ Nv(Zi). Note
that the random variables {Xv,i(j)}, j, are mutually inde-
pendent. Furthermore, we have E[Xv,i(j)|Zi] = Dv(Zi)/m >
αd/m for all j. Since there are cm logn/d such samples in
Si, by linearity of expectation we get: E[Dv(Zi, Si)|Zi] =∑
j E[Xv,i(j)|Zi] > (cm logn/d) · (αd/m) = αc logn. The

node v is included in Zi+1 iffDv(Zi, Si) ≥ (1−ε)αc logn, and
this event, in turn, occurs with high probability (by Cher-
noff bound). Taking a union bound over all nodes v ∈ Ai,
we conclude that Pr[Zi+1 ⊇ Ai |Zi] ≥ 1 − 1/(poly n). Us-
ing a similar line of reasoning, we get that Pr[Zi+1 ∩ Bi =
∅ |Zi] ≥ 1− 1/(poly n). Invoking a union bound over these
two events, we get Pr[Ei |Zi] ≥ 1 − 1/(poly n). Since this
holds for all possible instantiations of Zi, the event Ei itself
occurs with high probability.

The space requirement of the algorithm, ignoring poly
log factors, is proportional to the number of samples in
S (which is cm(L − 1) logn/d) plus the number of nodes
in V (which is n). Since c is a constant and since L =
O(poly logn), we derive that the total space requirement is
O((n+m/d) poly logn).

Now, to turn Lemma 3.2 into a streaming algorithm, we
simply have to invoke Lemma 3.3 which follows from a well-
known result about `0-sampling in the streaming model [24],
and a simple observation (yet very important) in Lemma 3.4.

Lemma 3.3 (`0-sampler [24]). We can process a dy-
namic stream of O(poly n) updates in the graph G = (V,E)
in O(poly logn) space, and with high probability, at each step
we can maintain a simple random sample from the set E.
The algorithm takes O(poly logn) time to handle each up-
date in the stream.

Lemma 3.4. Let d∗ = maxS⊆V ρ(S) be the maximum den-
sity of any subgraph in G. Then m/n ≤ d∗ < n.

Proof of Theorem 3.1. Sincem is the number of edges
in the graph G at the end of the entire stream of updates,
we do not know the value of m in advance. Thus, be-
fore processing the first update in the stream, we make
O(poly(logn, 1/ε)) many “guesses” for the value of m. Let
m′ be the “correct” guess (within a multiplicative factor
of 1 + ε) for the value of m. Define π ← m′/(2αn) and
σ ← 2(1 + ε)n. Since ε ∈ (0, 1/2), by Lemma 3.4 we
have α · π < d∗ < σ/(2(1 + ε)). Thus, we can discretize
the range [π, σ] in powers of (1 + ε) by defining the values
{dk}, k ∈ [K], as per Corollary 2.3. Accordingly, to return
a 2α(1 + ε)2 = (2 +O(ε))-approximation of optimal density,
all we need to do is to construct an (α, dk, L)-decomposition
of the graph G = (V,E) at the end of the stream, for ev-
ery k ∈ [K]. Since K = O(log(1+ε)(σ/π)) = O(poly log n),
Theorem 3.1 follows from Claim 3.5 below. For each of our
initial guesses for the value of m, we run the above procedure
(in parallel) while going through the stream of updates. At
the end of the stream, we simply reject the outputs given by
the wrong guesses and take the output given by the correct
one.

Claim 3.5. Fix any k ∈ [K]. We can process a dynamic
stream of updates in the graph G in O(n poly logn) space,

and with high probability return an (α, dk, L)-decomposition
of G at the end of the stream.

Now we prove Claim 3.5. Define λk ← cm(L−1) logn/dk.
Since dk ≥ π = m/(2αn), we have λk = O(n poly logn).
While going through the dynamic stream of updates in G,
we simultaneously run λk mutually independent copies of
the `0-sampler as specified in Lemma 3.3. Thus, with high
probability, we get λk mutually independent simple random
samples from the edge-set E at the end of the stream. Next,
we use these random samples to construct an (α, dk, L)-
decomposition ofG, with high probability, as per Lemma 3.2.

By Lemma 3.3, each `0-sampler requires O(poly log n) bits
of space, and there are λk many of them. Furthermore, the
algorithm in Lemma 3.2 requires O((n + m/dk) poly logn)
bits of space. Thus, the total space requirement of our al-
gorithm is O((λk + n+m/dk) poly logn) = O(n poly log n)
bits.

4. A SINGLE PASS DYNAMIC STREAMING
ALGORITHM

We devote this section to the proof of our main result (The-
orem 1.1). Throughout this section, fix α = 2 + Θ(ε), L ←
2 + dlog(1+ε) ne, and let c � λ be a sufficiently large con-
stant. We call the input graph “sparse” whenever it has less
than 4αc2n log2 n edges, and “dense” otherwise. We simul-
taneously run two algorithms while processing the stream
of updates – the first (resp. second) one outputs a cor-
rect value whenever the graph is sparse (resp. dense). It
is the algorithm for dense graphs that captures the techni-
cal difficulty of the problem. To focus on this case (due to
space constraints), we assume that the first 4αc2n log2 n up-
dates in the dynamic stream consist of only edge-insertions,
so that the graph G(t) becomes dense at t = 4αc2n log2 n.
Next, we assume that the graph G(t) remains dense at each
t ≥ 4αc2n log2 n. We focus on maintaining the value of
Output(t) during the latter phase. For a full proof of The-
orem 1.1 that does not require any of these simplifying as-
sumptions, see the full version [7].

Assumption 4.1. Define T ′ ← d4αc2n log2 ne. We have

m(t) ≥ 4αc2n log2 n for all t ∈ [T ′, T ].

Consider any t ∈ [T ′, T ]. Define π(t) = m(t)/(2αn) and

σ = 2(1+ε)n. It follows that α·π(t) < Opt(t) < σ/(2(1+ε)).

Discretize the range [π(t), σ] in powers of (1 + ε), by defin-

ing d
(t)
k ← (1 + ε)k−1 · π(t) for all k ∈ [K], where K ←

1+dlog(1+ε)(σ ·(2αn))e. Note that for all t ∈ [T ′, T ] we have

K > dlog(1+ε)(σ/π
(t))e. Also note that K = O(poly logn).

By Corollary 2.3, the algorithm only has to maintain an

(α, d
(t)
k , L)-decomposition for each k ∈ [K]. Specifically,

Theorem 1.1 follows from Theorem 4.2.

Theorem 4.2. Let us fix any k ∈ [K]. There is an al-
gorithm that processes the first T updates in the dynamic
stream using Õ(n) space, and under Assumption 4.1, it gives
the following guarantees with high probability: At each t ∈
[T ′, T ], the algorithm maintains an (α, d

(t)
k , L)-decomposition

(Z
(t)
1 , . . . , Z

(t)
L ) of G(t). Further, the total amount of com-

putation performed is O(T poly logn).

As we mentioned earlier in Sections 1 and 2, our algorithm
can output an approximate densest subgraph by maintaining



the density at each level of the (α, d, L) decomposition and
simply keeping track of the level that gives us maximum
density.

4.1 Proof of Theorem 4.2
Notation. Define s

(t)
k = cm(t) logn/d

(t)
k for all t ∈ [T ′, T ].

Plugging in the value of d
(t)
k , we get s

(t)
k = 2αcn logn/(1 +

ε)k−1. Since s
(t)
k does not depend on t, we omit the super-

script and refer to it as sk instead.

Overview of our approach. As a first step, we want to
show that for each i ∈ [L − 1], we can maintain a random

set of sk edges S
(t)
i ⊆ E(t) such that Pr[e ∈ S(t)

i ] = sk/m
(t)

for all e ∈ E(t). This has the following implication: Fix any
subset of nodes U ⊆ V . If a node u ∈ U has Du(U,E(t)) >

αd
(t)
k , then in expectation we have Du(U, S

(t)
i ) > αc logn.

Since this expectation is large enough, a suitable Chernoff

bound implies that Du(U, S
(t)
i ) > (1 − ε)αc logn with high

probability. Accordingly, we can use the random sets {S(t)
i },

i ∈ [L − 1], to construct an (α, d
(t)
k , L)-decomposition of

G(t) as follows. We set Z
(t)
1 = V , and for each i ∈ [L −

1], we iteratively construct the subset Z
(t)
i+1 by taking the

nodes u ∈ Z(t)
i with Du(Z

(t)
i , S

(t)
i ) > (1 − ε)αc logn. Here,

we crucially need the property that the random set S
(t)
i is

chosen independently of the contents of Z
(t)
i . Note that Z

(t)
i

is actually determined by the contents of the sets {S(t)
j }, j <

i. Since sk = Õ(n), each of these random sets S
(t)
i consists

of Õ(n) many edges. While following up on this high level
approach, we need to address two major issues, as described
below.

Fix some i ∈ [L− 1]. A naive way of maintaining the set

S
(t)
i would be to invoke a well known result on `0-sampling

on dynamic streams (see Lemma 3.3). This allows us to

maintain a uniformly random sample from E(t) in Õ(1) up-
date time. So we might be tempted to run sk mutually
independent copies of such an `0-Sampler on the edge-set
E(t) to generate a random set of size sk. The problem is
that when an edge insertion/deletion occurs in the input
graph, we have to probe each of these `0-Samplers, lead-
ing to an overall update time of O(sk poly log n), which can

be as large as Θ̃(n) when k is small (say for k = 1). In
Lemma 4.3, we address this issue by showing how to main-

tain the set S
(t)
i in Õ(1) worst case update time and Õ(n)

space.
The remaining challenge is to maintain the decomposition

(Z
(t)
1 , . . . , Z

(t)
L ) dynamically as the random sets {S(t)

i }, i ∈
[L − 1], change with t. Again, a naive implementation –
building the decomposition from scratch at each t – would
require Θ(n) update time. In Section 4.1.1, we give a pro-
cedure that builds a new decomposition at any given t ∈
[T ′, T ], based on the old decomposition at (t−1) and the new

random sets {S(t)
i }, i ∈ [L− 1]. In Section 4.1.2, we present

the data structures for implementing this procedure and an-
alyze the space complexity. In Section 4.1.3, we bound the
amortized update time using a fine-tuned potential func-
tion. Theorem 4.2 follows from Lemmata 4.5, 4.6, 4.10 and
Claim 4.9.

Lemma 4.3. We can process the first T updates in a dy-
namic stream using Õ(n) space and maintain a random sub-

set of edges S
(t)
i ⊆ E(t), |S(t)

i | = sk, at each t ∈ [T ′, T ]. Let

X
(t)
e,i denote an indicator variable for the event e ∈ S(t)

i . The
following guarantee holds w.h.p.:

• At each t ∈ [T ′, T ], we have that Pr[X
(t)
e,i = 1] ∈[

(1± ε)c logn/d
(t)
k

]
for all e ∈ E(t). The variables{

X
(t)
e,i

}
, e ∈ E(t), are negatively associated.

• Each update in the dynamic stream is handled in Õ(1)
time and leads to at most two changes in Si.

Proof. (Sketch) Let E∗ denote the set of all possible

ordered pairs of nodes in V . Thus, E∗ ⊇ E(t) at each t ∈
[1, T ], and furthermore, we have |E∗| = O(n2). Using a well
known result from the hashing literature [34], we construct
a (2csk logn)-wise independent uniform hash function h :

E∗ → [sk] in Õ(n) space. This hash function partitions the

edge-set E(t) into sk mutually disjoint buckets {Q(t)
j }, j ∈

[sk], where the bucket Q
(t)
j consists of those edges e ∈ E(t)

with h(e) = j. For each j ∈ [sk], we run an independent
copy of `0-Sampler, as per Lemma 3.3, that maintains a

uniformly random sample from Q
(t)
j . The set S

(t)
i consists of

the collection of outputs of all these `0-Samplers. Note that
(a) for each e ∈ E∗, the hash value h(e) can be evaluated
in constant time [34], (b) an edge insertion/deletion affects
exactly one of the buckets, and (c) the `0-Sampler of the

affected bucket can be updated in Õ(1) time. Thus, we infer
that this procedure handles an edge insertion/deletion in the

input graph in Õ(1) time, and furthermore, since sk = Õ(n),

the procedure can be implemented in Õ(n) space.
Fix any time-step t ∈ [T ′, T ] (see Assumption 4.1). Since

m(t) ≥ 2csk logn, we can partition (purely as a thought

experiment) the edges in E(t) into at most polynomially

many groups
{
H

(t)

j′

}
, in such a way that the size of each

group lies between csk logn and 2csk logn. Thus, for any

j ∈ [sk] and any j′, we have |H(t)

j′ ∩Q
(t)
j | ∈ [c logn, 2c logn]

in expectation. Since the hash function h is (2csk logn)-
wise independent, by applying a Chernoff bound we infer

that with high probability, the value |H(t)

j′ ∩ Q
(t)
j | is very

close to its expectation. Applying the union bound over all
j, j′, we infer that with high probability, the sizes of all the

sets
{
H

(t)

j′ ∩Q
(t)
j

}
are very close to their expected values –

let us call this event R(t). Since E[|Q(t)
j |] = m(t)/sk and

|Q(t)
j | =

∑
j′ |Q

(t)
j ∩ H

(t)

j′ |, under the event R(t), we have

that |Q(t)
j | is very close to m(t)/sk for all j ∈ [sk]. Under

the same event R(t), due to the `0-Samplers, the probabil-

ity that a given edge e ∈ E(t) becomes part of S
(t)
i is very

close to 1/|Q(t)
j | ≈ sk/m

(t) = c logn/d
(t)
k .

Finally, the property of negative association follows from
the observations that (a) if two edges are hashed to dif-

ferent buckets, then they are included in S
(t)
i in a mutu-

ally independent manner, and (b) if they are hashed to the
same bucket, then they are never simultaneously included

in S
(t)
i .



4.1.1 Maintaining an (α, d
(t)
k , L)-decomposition using

the random sets S(t)
i , i ∈ [L− 1]

While processing the stream of updates, we run an in-
dependent copy of the algorithm in Lemma 4.3 for each
i ∈ [L−1]. Thus, we assume that we have access to the ran-

dom sets S
(t)
i , i ∈ [L−1], at each t ∈ [T ′, T ]. In this section,

we present an algorithm that maintains a decomposition

(Z
(t)
1 , . . . , Z

(t)
L ) at each time-step t ∈ [T ′, T ] as long as the

graph is dense (see Assumption 4.1), using the random sets

S
(t)
i , i ∈ [L−1]. Specifically, we handle the tth update in the

dynamic stream as per the procedure in Algorithm 1. The

procedure outputs the new decomposition (Z
(t)
1 , . . . , Z

(t)
L )

starting from the old decomposition (Z
(t−1)
1 , . . . , Z

(t−1)
L ) and

the new samples
{
S

(t)
i

}
, i ∈ [L− 1].

Algorithm 1 RECOVER-SAMPLE(t).

1: Set Z
(t)
1 ← V .

2: for i = 1 to L do
3: Set Yi ← Z

(t−1)
i .

4: end for
5: for i = 1 to (L− 1) do

6: Let A
(t)
i be the set of nodes y ∈ Z

(t)
i having

Dy(Z
(t)
i , S

(t)
i ) > (1− ε)2αc logn.

7: Let B
(t)
i be the set of nodes y ∈ Z

(t)
i having

Dy(Z
(t)
i , S

(t)
i ) < (1 + ε)2c logn.

8: Set Yi+1 ← Yi+1 ∪A(t)
i .

9: for j = i+ 1 to (L− 1) do

10: Set Yj ← Yj \B(t)
i .

11: end for
12: Set Z

(t)
i+1 ← Yi+1.

13: end for

We have have the following observation.

Lemma 4.4. Fix a t ∈ [T ′, T ] and an i ∈ [L − 1]. (1)

The set Z
(t)
i is completely determined by the contents of the

sets
{
S

(t)
j

}
, j < i. (2) The sets

{
S

(t)
j

}
, j ≥ i, are chosen

independently of the contents of the set Z
(t)
i .

Lemma 4.5. With high probability, at each t ∈ [T ′, T ] the

tuple (Z
(t)
1 . . . Z

(t)
L ) is an (α, d

(t)
k , L)-decomposition of G(t).

Proof. (sketch) For t ∈ [T ′, T ], i ∈ [L−1], let E(t)i denote

the event that (a) Z
(t)
i+1 ⊇ {v ∈ Z

(t)
i : Dv(Z

(t)
i , E(t)) >

αd
(t)
k } and (b) Z

(t)
i+1 ∩ {v ∈ Z

(t)
i : Dv(Z

(t)
i , E(t)) < d

(t)
k } = ∅.

By Definition 2.1, the tuple (Z
(t)
1 . . . Z

(t)
L ) is an (α, d

(t)
k , L)-

decomposition of G(t) iff the event E(t)i holds for all i ∈
[L − 1]. Below, we show that Pr[E(t)i ] ≥ 1 − 1/(poly n) for
any given i ∈ [L− 1] and t ∈ [T ′, T ]. The lemma follows by
taking a union bound over all i, t.

Fix any instance of the random set Z
(t)
i and condition on

this event. Consider any node v ∈ Z(t)
i withDv(Z

(t)
i , E(t)) >

αd
(t)
k . By Lemma 4.3, each edge e ∈ E(t) appears in S

(t)
i

with probability (1± ε)c logn/d
(t)
k and these events are neg-

atively associated. By linearity of expectation, we have

E[Dv(Z
(t)
i , S

(t)
i )] ≥ (1 − ε)αc logn. Since the random set

S
(t)
i is chosen independently of the contents of Z

(t)
i (see

Lemma 4.4), we can apply a Chernoff bound on this expecta-

tion and derive that Pr[v /∈ Z(t)
i+1 |Z

(t)
i ] = Pr[Dv(Z

(t)
i , S

(t)
i ) ≤

(1−ε)2αc logn |Z(t)
i ] ≤ 1/(poly n). Next, consider any node

u ∈ Z(t)
i with Du(Z

(t)
i , E(t)) < d

(t)
k . Using a similar argu-

ment, we get Pr[u ∈ Z(t)
i+1 |Z

(t)
i ] = Pr[Du(Z

(t)
i , E(t)) ≥ (1 +

ε)2c logn |Z(t)
i ] ≤ 1/(poly n). Taking a union bound over all

possible nodes, we infer that Pr[E(t)i |Z
(t)
i ] ≥ 1−1/(poly n).

Since the guarantee Pr[E(t)i |Z
(t)
i ] ≥ 1 − 1/(poly n) holds

for every possible instance of Z
(t)
i , we get Pr[E(t)i ] ≥ 1 −

1/(poly n).

4.1.2 Data structures for the procedure in Algorithm 1
and bounding its amortized update time

Recall the notations defined immediately after Definition 2.1.

• Consider any node v ∈ V and any i ∈ {1, . . . , L−1}. We
maintain the doubly linked lists {Friendsi[v, j]} , 1 ≤
j ≤ L − 1 as defined below. These lists depend on the
neighborhood of v induced by the edge-set Si.

• If i ≤ `(v), then we have:

• Friendsi[v, j] is empty for all j > i.

• Friendsi[v, j] = Nv(Zj , Si) for j = i.

• Friendsi[v, j] = Nv(Vj , Si) for all j < i.

• Else if i > `(v), then we have:

• Friendsi[v, j] is empty for all j > `(v).

• Friendsi[v, j] = Nv(Zj , Si) for j = `(v).

• Friendsi[v, j] = Nv(Vj , Si) for all j < `(v).

For every node v ∈ V , we maintain a counter Degreei[v].
If `(v) ≥ i, then this counter equals the number of nodes in
Friendsi[v, i]. Else if `(v) < i, then this counter equals zero.
Further, we maintain a doubly linked list Dirty-Nodes[i].
This list consists of all the nodes v ∈ V having either{
Degreei[v] > (1−ε)2αc logn and `(v) = i

}
or
{
Degreei[v]

< (1 + ε)2c logn and `(v) > i
}

.

Implementing the procedure in Algorithm 1. Fix any
t ∈ [T ′, T ], and consider the ith iteration of the main For
loop (Steps 05-13) in Algorithm 1. The purpose of this it-

eration is to construct the set Z
(t)
i+1, based on the sets Z

(t)
i

and S
(t)
i . Below, we state an alternate way of visualizing

this iteration.
We scan through the list of nodes u with `(u) = i and

Du(Z
(t)
i , S

(t)
i ) > (1 − ε)2αc logn. While considering each

such node u, we increment its level from i to (i + 1). This
takes care of the Steps (06) and (08). Next, we scan through

the list of nodes v with `(v) > i and Dv(Z
(t)
i , S

(t)
i ) < (1 +

ε)2c logn. While considering any such node v at level `(v) =
jv > i (say), we decrement its level from jv to i. This takes
care of the Steps (07), (09), (10) and (11).

Note that the nodes undergoing a level-change in the pre-
ceding paragraph are precisely the ones that appear in the
list Dirty-Nodes[i] just before the ith iteration of the main
For loop. Thus, we can implement a single iteration of the
For loop (Steps 05-13) as follows: Scan through the nodes y
in Dirty-Nodes[i] one after another. While considering any
such node y, change its level as per Algorithm 1, and then
update the relevant data structures to reflect this change.



Lemma 4.6. The procedure in Algorithm 1 can be imple-
mented in Õ(n) space.

Proof. (sketch) The amount of space needed is domi-

nated by the number of edges in
{
S

(t)
i

}
, i ∈ [L − 1]. Since

|S(t)
i | ≤ sk for each i ∈ [L − 1], the space complexity is

(L− 1) · sk = Õ(n).

Claim 4.7. Fix a t ∈ [T ′, T ] and consider the ith iteration
of the main For loop in Algorithm 1. Consider any two

nodes u, v ∈ Z
(t)
i such that (a) the level of u is increased

from i to (i + 1) in Steps 08, 12 and (b) the level of v is
decreased to i in Steps 09-12. Updating the relevant data

structures require
∑
i′>iO(1 + Dy(Z

(t)
i , S

(t)

i′ )) time, where
y = u (resp. v) in the former (resp. latter) case.

Proof. (sketch) Follows from the fact that we only need
to update the lists Friendsi′ [x, j] where i′ > i, x ∈ {y} ∪
Ny(Z

(t)
i , S

(t)

i′ ) and j ∈ {1, . . . , L− 1}.

4.1.3 Bounding the amortized update time
Potential function. To determine the amortized update
time we use a potential function B as defined in equation 4.
Note that the potential B is uniquely determined by the
assignment of the nodes v ∈ V to the levels [L] and by the
content of the random sets S1, . . . , S(L−1). For all nodes
v ∈ V , we define:

Γi(v) = max(0, (1− ε)2αc logn−Dv(Zi, Si)) (1)

Φ(v) = (L/ε) ·
`(v)−1∑
i=1

Γi(v) (2)

For all u, v ∈ V , let f(u, v) = 1 if `(u) = `(v) and 0 oth-
erwise. Also, let ruv = min(`(u), `(v)). For all i ∈ [L − 1],
(u, v) ∈ Si, we define:

Ψi(u, v) =

{
0 if ruv ≥ i;
2 · (i− ruv) + f(u, v) otherwise.

, (3)

B =
∑
v∈V

Φ(v) +

(L−1)∑
i=1

∑
e∈Si

Ψi(e) (4)

Below, we show that an event F holds with high proba-
bility (Definition 4.8, Claim 4.9). Next, conditioned on this
event, we show that our algorithm has O(poly logn) amor-
tized update time (Lemma 4.10).

Definition 4.8. For all i, i′ ∈ [L − 1], i < i′, let F (t)

i,i′

be the event that:
{
Dv(Z

(t)
i , S

(t)

i′ ) ≥ (1−ε)4
(1+ε)2

· (αc logn) for

all v ∈ A
(t)
i

}
, and

{
Dv(Z

(t)
i , S

(t)

i′ ) ≤ (1+ε)4

(1−ε)2 · c logn for all

v ∈ B(t)
i

}
. Define F (t) =

⋂
i,i′ F

(t)

i,i′ .

Claim 4.9. Define the event F =
⋂T
t=T ′ F (t). The event

F holds with high probability.

Proof. (sketch) Fix any 1 ≤ i < i′ ≤ L − 1, any t ∈
[T ′, T ], and condition on any instance of the random set

Z
(t)
i . By Lemma 4.4, the random sets S

(t)
i , S

(t)

i′ are cho-

sen independently of Z
(t)
i . Further, for all v ∈ Z

(t)
i , we

have E[Dv(Z
(t)
i , S

(t)
i )] = E[Dv(Z

(t)
i , S

(t)

i′ )] = (c logn/d
(t)
k ) ·

Dv(Z
(t)
i , E(t)), and by Lemma 4.3 we can apply a Chernoff

bound on this expectation. Thus, applying union bounds
over {i, i′}, we infer that w.h.p. the following condition

holds: If Dv(Z
(t)
i , E(t)) is sufficiently smaller (resp. larger)

than d
(t)
k , then both Dv(Z

(t)
i , S

(t)
i ) and Dv(Z

(t)
i , S

(t)

i′ ) are
sufficiently smaller (resp. larger) than c logn. The proof
follows by deriving a variant of this claim and then applying
union bounds over all i, i′ and t.

Lemma 4.10. Condition on event F . We have (a) 0 ≤
B = Õ(n) at each t ∈ [T ′, T ], (b) insertion/deletion of an
edge in G (ignoring the call to Algorithm 1) changes the

potential B by Õ(1), and (c) for every constant amount of
computation performed while implementing Algorithm 1, the
potential B drops by Ω(1).

Theorem 4.2 follows from Lemmata 4.5, 4.6, 4.10 and
Claim 4.9. We now focus on proving Lemma 4.10.

Proof of part (a). Follows from three facts. (1) We have
0 ≤ Φ(v) ≤ (L/ε) · L · (1 − ε)2αc logn = O(poly log n) for
all v ∈ V . (2) We have 0 ≤ Ψi(u, v) ≤ 3L = O(poly log n)

for all i ∈ [L − 1], (u, v) ∈ S(t)
i . (3) We have |S(t)

i | ≤ sk =
O(n poly log n) for all i ∈ [L− 1].

Proof of part (b). By Lemma 4.3, insertion/deletion of
an edge in G leads to at most two insertions/deletions in the
random set Si, for all i ∈ [L − 1]. As L = O(poly logn), it
suffices to show that for every edge insertion/deletion in any

given S
(t)
i , the potential B changes by at most O(poly log n)

(ignoring call to Algorithm 1).
Towards this end, fix any i ∈ [L− 1], and suppose that a

single edge (u, v) is inserted into (resp. deleted from) S
(t)
i .

For each node v ∈ V , this changes the potential Φ(v) by at
most O(L/ε). Additionally, the potential Ψi(u, v) ∈ [0, 3L]
is created (resp. destroyed). Summing over all the nodes v ∈
V , we infer that the absolute value of the change in the over-
all potential B is at most O(3L+ nL/ε) = O(n poly log n).

Proof of part (c). Focus on a single iteration of the For
loop in Algorithm 1. Consider two possible operations.

Case 1: A node v ∈ Z(t)
i is promoted from level i to

level (i+ 1) in Steps 08, 12 of Algorithm 1.

This can happen only if v ∈ A
(t)
i . Let C denote the

amount of computation performed during this event.

C =

(L−1)∑
i′=(i+1)

O
(

1 +Dv(Z
(t)
i , S

(t)

i′ )
)

(5)

Let ∆ be the net decrease in the overall potential B due
to this event. We make the following observations.

1. Consider any i′ > i. For each edge (u, v) ∈ S(t)

i′ with

u ∈ Z(t)
i , the potential Ψi′(u, v) decreases by at least

one. For every other edge e ∈ S(t)

i′ , the potential Ψi′(e)
remains unchanged.

2. For each i′ ∈ [i] and each edge e ∈ S(t)

i′ , the potential
Ψi′(e) remains unchanged.

3. Since the node v is being promoted to level (i + 1),

we have Dv(Z
(t)
i , S

(t)
i ) ≥ (1 − ε)2αc logn. Thus, the

potential Φ(v) remains unchanged. For each node u 6=
v, the potential Φ(u) can only decrease.



Taking into account all these observations, we infer the fol-
lowing inequality.

∆ ≥
(L−1)∑
i′=(i+1)

Dv(Z
(t)
i , S

(t)

i′ ) (6)

Since v ∈ A(t)
i , and since we have conditioned on the event

F (t) (see Definition 4.8), we get:

Dv(Z
(t)
i , S

(t)

i′ ) > 0 for all i′ ∈ [i+ 1, L− 1]. (7)

Equations (5), (6), (7) imply that the decrease in B is
sufficient to pay for the computation performed.

Case 2: A node v ∈ Z(t)
i is demoted from level j > i

to level i in Steps 09-12 of Algorithm 1.

This can happen only if v ∈ B
(t)
i . Let C denote the

amount of computation performed during this event. By
Claim 4.7, we have

C =

(L−1)∑
i′=(i+1)

O(1 +Dv(Z
(t)
i , S

(t)

i′ )) (8)

Let γ = (1 + ε)4/(1− ε)2. Equation (9) holds since v ∈ B(t)
i

and since we conditioned on the event F . Equation (10)
follows from equations (8), (9) and the facts that γ, c are
constants,

Dv(Z
(t)
i , S

(t)

i′ ) ≤ γc logn for all i′ ∈ [i, L− 1] (9)

C = O(L logn) (10)

Let ∆ be the net decrease in the overall potential B due to
this event. We make the following observations.

1. By eq. (9), the potential Φ(v) decreases by at least
(j − i) · (L/ε) · ((1− ε)2α− γ) · (c logn).

2. For u ∈ V \{v} and i′ ∈ [1, i]∪ [j+1, L−1], the poten-
tial Γi′(u) remains unchanged. This observation, along
with equation (9), implies that the sum

∑
u6=v Φ(u) in-

creases by at most (L/ε) ·
∑j
i′=(i+1)Dv(Z

(t)
i , S

(t)

i′ ) ≤
(j − i) · (L/ε) · (γc logn).

3. For every i′ ∈ [1, i], and e ∈ S(t)

i′ the potential Ψi′(e)
remains unchanged. Next, consider any i′ ∈ [i+ 1, L−
1]. For each edge (u, v) ∈ S(t)

i′ with u ∈ Z(t)
i , the po-

tential Ψi′(u, v) increases by at most 3(j−i). For every

other edge e ∈ S(t)

i′ , the potential Ψi′(e) remains un-
changed. These observations, along with equation (9),
imply that the sum

∑
i′
∑
e∈Si′

Ψi′(e) increases by at

most
∑(L−1)

i′=(i+1) 3(j− i) ·Dv(Z
(t)
i , S

(t)

i′ ) ≤ (j− i) · (3L) ·
(γc logn).

Taking into account all these observations, we get:

∆ ≥ (j − i)(L/ε)((1− ε)2α− γ)(c logn)

−(j − i)(L/ε)(γc logn)− (j − i)(3L)(γc logn)

= (j − i) · (L/ε) · ((1− ε)2α− 2γ − 3εγ) · (c logn)

≥ Lc logn

(11)

The last inequality holds since (j − i) ≥ 1 and α ≥ (ε +
(2 + 3ε)γ)/(1 − ε)2 = 2 + Θ(ε), for some sufficiently small

constant ε ∈ (0, 1). From eq. (10) and (11), we conclude
that the net decrease in the overall potential B is sufficient
to pay for the cost of the computation performed.

5. OPEN PROBLEMS
An obvious question is whether the (4 + ε) approximation

ratio provided by our algorithm is tight. In particular, it will
be interesting if one can improve the approximation ratio to
(2 + ε) to match the case where an update time is not a
concern. Getting this approximation ratio even with larger
space complexity is still interesting. (Epasto et al. [15] al-
most achieved this except that they have to assume that the
deletions happen uniformly at random.) It is equally inter-
esting to show a hardness result. Currently, there is only a
hardness result for maintaining the optimal solution [23]. It
will be interesting to show a hardness result for approxima-
tion algorithms. Another interesting question is whether a
similar result to ours can be achieved with polylogarithmic
worst-case update time. Finally, a more general question
is whether one can obtain space- and time-efficient fully-
dynamic algorithm like ours for other fundamental graph
problems, e.g. maximum matching and single-source short-
est paths.
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