304 research outputs found

    SQUID measurements of remanent magnetisation in refillable 3He spin filter cells SFC

    Get PDF
    A strong influence of external magnetic fields on the relaxation time constant T1 of glass cells serving as 3He neutron spin filters, observed for different glass types in alkali metal coated cells, was initially associated with the presence of a large number of ferromagnetic clusters on the glass surface. Later experiments showed the presence of the so called T1 hysteresis phenomenon with a similar distinctiveness also in uncoated cells made of pure synthetic quartz glass. It suggests that the origin of such relaxation is a macroscopic magnetisation in the bulk material of the cell. We present the results of a multi SQUID system investigation on magnetised and non magnetised quartz glass cells, Cs coated as well as bare wall, to be used as neutron spin filters at HMI Berlin. The presence of a macroscopic remanent magnetic moment in the cells after their exposition to external magnetic fields has been experimentally shown. More than 80 of the remanent magnetic moment of the magnetised cells was found to be concentrated in the region around the glass valves. SQUID measurements reveal the existence of some remanent magnetisation in all valve parts and also in the vacuum grease, but most magnetic are the plastic parts and the O ring. Different valve and sealing types has been compared in order to find less magnetisable on

    Low temperature magnetic structure of CeRhIn5_5 by neutron diffraction on absorption-optimized samples

    Full text link
    Two aspects of the ambient pressure magnetic structure of heavy fermion material CeRhIn5_5 have remained under some debate since its discovery: whether the structure is indeed an incommensurate helix or a spin density wave, and what is the precise magnitude of the ordered magnetic moment. By using a single crystal sample optimized for hot neutrons to minimize neutron absorption by Rh and In, here we report an ordered moment of m=0.54(2) μBm=0.54(2)~\mu_B. In addition, by using spherical neutron polarimetry measurements on a similar single crystal sample, we have confirmed the helical nature of the magnetic structure, and identified a single chiral domain

    Neutron inelastic scattering study of rare-earth orthoferrite HoFeO3_3

    Full text link
    By the single crystal inelastic neutron scattering the orthoferrite HoFeO3 was studied. We show that the spin dynamics of the Fe subsystem does not change through the spin-reorientation transitions. The observed spectrum of magnetic excitations was analyzed in the frames of linear spin-wave theory. Within this approach the antiferromagnetic exchange interactions of nearest neighbors and next nearest neighbors were obtained for Fe subsystem. Parameters of Dzyaloshinskii-Moriya interactions at Fe subsystem were refined. The temperature dependence of the gap in Fe spin-wave spectrum indicates the temperature evolution of the anisotropy parameters. The estimations for the values of Fe-Ho and Ho-Ho exchange interaction were made as well

    Homo-chiral crystal growth and mono-chiral helimagnetism in inorganic chiral magnetic compounds

    Get PDF
    Trabajo presentado al International Workshop on Multipole Physics and Related Phenomena (J-Physics), celebrado en Hachimantai, Iwate (Japón) del 24 al 28 de septiembThis work was supported by JSPS KAKENHI Grant Number 25220803, 25390139, 26108719, 15H03680, 15H05885, 15H05886, 16KK0102, 17H02912, 17H02767, and 17H02815. JC acknowledges the Grant Number MAT2015-68200-C2-2-P from the Spanish Ministry of Economy and Competitiveness.Peer Reviewe

    Tunable Emergent Heterostructures in a Prototypical Correlated Metal

    Full text link
    At the interface between two distinct materials desirable properties, such as superconductivity, can be greatly enhanced, or entirely new functionalities may emerge. Similar to in artificially engineered heterostructures, clean functional interfaces alternatively exist in electronically textured bulk materials. Electronic textures emerge spontaneously due to competing atomic-scale interactions, the control of which, would enable a top-down approach for designing tunable intrinsic heterostructures. This is particularly attractive for correlated electron materials, where spontaneous heterostructures strongly affect the interplay between charge and spin degrees of freedom. Here we report high-resolution neutron spectroscopy on the prototypical strongly-correlated metal CeRhIn5, revealing competition between magnetic frustration and easy-axis anisotropy -- a well-established mechanism for generating spontaneous superstructures. Because the observed easy-axis anisotropy is field-induced and anomalously large, it can be controlled efficiently with small magnetic fields. The resulting field-controlled magnetic superstructure is closely tied to the formation of superconducting and electronic nematic textures in CeRhIn5, suggesting that in-situ tunable heterostructures can be realized in correlated electron materials

    Physics beyond the standard model with kaons at NA62

    Get PDF
    The NA62 experiment at CERN Super Proton Synchrotron was designed to measure BR(K+ \u2192 \u3c0+\u3bdv\u304) with an in-fight technique, never used before for this measurement. This decay is characterised by a very precise prediction in the Standard Model. Its branching ratio, which is expected to be less than 10-10, is one of the best candidates to indicate indirect effects of new physics beyond SM at the highest mass scales. NA62 result on K+ \u2192 \u3c0+\u3bdv\u304 from the full 2016 data set is described. Also a search for an invisible dark photon A\u2032 has been performed, exploiting the efficient photon-veto capability and high resolution tracking of the NA62. The signal stems from the chain K+ \u2192 \u3c0+\u3c00 followed by \u3c00 \u2192 A\u2032\u3b3. No significant statistical excess has been identified. Upper limits on the dark photon coupling to the ordinary photon as a function of the dark photon mass have been set, improving on the previous limits over the mass range 60 - 110 MeV/c2

    Externalities and the nucleolus

    Full text link
    In most economic applications, externalities prevail: the worth of a coalition depends on how the other players are organized. We show that there is a unique natural way of extending the nucleolus from (coalitional) games without externalities to games with externalities. This is in contrast to the Shapley value and the core for which many different extensions have been proposed

    Search for π⁰ decays to invisible particles

    Get PDF
    The NA62 experiment at the CERN SPS reports a study of a sample of 4 × 109 tagged π0 mesons from K+ → π+π0(γ), searching for the decay of the π0 to invisible particles. No signal is observed in excess of the expected background fluctuations. An upper limit of 4.4 × 10−9 is set on the branching ratio at 90% confidence level, improving on previous results by a factor of 60. This result can also be interpreted as a model- independent upper limit on the branching ratio for the decay K+ → π+X, where X is a particle escaping detection with mass in the range 0.110–0.155 GeV/c2 and rest lifetime greater than 100 ps. Model-dependent upper limits are obtained assuming X to be an axion-like particle with dominant fermion couplings or a dark scalar mixing with the Standard Model Higgs boson

    Searches for lepton number violating K+ decays

    Get PDF
    The NA62 experiment at CERN reports a search for the lepton number violating decays K+→π−e+e+ and K+→π−μ+μ+ using a data sample collected in 2017. No signals are observed, and upper limits on the branching fractions of these decays of 2.2 x 10^-10 and 4.2 x 10^-11 are obtained, respectively, at 90% confidence level. These upper limits improve on previously reported measurements by factors of 3 and 2, respectively
    corecore