233 research outputs found

    Measurements of O3</sub>, NO<sub>2</sub> and BrO at the Kaashidhoo Climate Observatory (KCO) during the INDOEX (INDian Ocean EXperiment) Campaign using ground based DOAS (Differential Optical Absorption Spectroscopy) and satellite based GOME (Global Ozone Monitoring Experiment) data

    No full text
    International audienceThe INDian Ocean EXperiment (INDOEX) was an international, multi-platform field campaign to measure long-range transport of air masses from South and South-East-(SE) Asia towards the Indian Ocean. During the dry monsoon season between January and March 1999, local measurements were carried out from ground based platforms and were compared with satellite based data. The objective of this study was to characterise stratospheric and tropospheric trace gas amounts in the equatorial region, and to investigate the impact of air pollution at this remote site. For the characterisation of the chemical composition of the outflow from the S-SE-Asian region, we performed ground based dual-axis-DOAS (Differential Optical Absorption Spectroscopy) measurements at the KCO (Kaashidhoo Climate Observatory) in the Maldives (5.0° N, 73.5° E). The ground based dual-axis-DOAS measurements were conducted using two different observation modes (off-axis and zenith-sky). This technique allows the separation of the tropospheric and stratospheric columns for different trace gases like O3 and NO2. These dual-axis DOAS data were compared with O3-sonde measurements performed at KCO and satellite based GOME (Global Ozone Measuring Experiment) data during the intensive measuring phase of the INDOEX campaign in February and March 1999. From GOME observations, tropospheric and stratospheric columns for O3 and NO2 were retrieved. In addition, the analysis of the O3-sonde measurements allowed the determination of the tropospheric O3 amount. The comparison shows that the results of all three measurement systems agree within their error limits. During the INDOEX campaign, background conditions were observed most of the time, but in a single case an increase of tropospheric NO2 during a short pollution event was observed and the impact on the vertical columns was calculated. In the GOME measurements, evidence was found for large tropospheric contributions to the BrO budget, probably located in the free troposphere and present throughout the year. The latter has been investigated by the comparison of satellite pixels influenced by high and low cloud conditions based on GOME data which allows the determination of the detection limit of tropospheric BrO columns

    Tailoring optical excitation to control magnetic skyrmion nucleation

    Get PDF
    In ferromagnetic multilayers, a single laser pulse with a fluence above an optical nucleation threshold can create magnetic skyrmions, which are randomly distributed over the area of the laser spot. However, in order to study the dynamics of skyrmions and for their application in future data technology, a controllable localization of the skyrmion nucleation sites is crucial. Here, it is demonstrated that patterned reflective masks behind a thin magnetic film can be designed to locally tailor the optical excitation amplitudes reached, leading to spatially controlled skyrmion nucleation on the nanometer scale. Using x ray microscopy, the influence of nanopatterned backside aluminum masks on the optical excitation is studied in two sample geometries with varying layer sequence of substrate and magnetic Co Pt multilayer. Surprisingly, the masks effect on suppressing or enhancing skyrmion nucleation reverses when changing this sequence. Moreover, optical near field enhancements additionally affect the spatial arrangement of the nucleated skyrmions. Simulations of the spatial modulation of the laser excitation and the following heat transfer across the interfaces in the two sample geometries are employed to explain these observations. The results demonstrate a reliable approach to add nanometer scale spatial control to optically induced magnetization processes on ultrafast timescale

    Limitations of Water Resources Infrastructure for Reducing Community Vulnerabilities to Extremes and Uncertainty of Flood and Drought

    Get PDF
    Debate and deliberation surrounding climate change has shifted from mitigation toward adaptation, with much of the adaptation focus centered on adaptive practices, and infrastructure development. However, there is little research assessing expected impacts, potential benefits, and design challenges that exist for reducing vulnerability to expected climate impacts. The uncertainty of design requirements and associated government policies, and social structures that reflect observed and projected changes in the intensity, duration, and frequency of water-related climate events leaves communities vulnerable to the negative impacts of potential flood and drought. The results of international research into how agricultural infrastructure features in current and planned adaptive capacity of rural communities in Argentina, Canada, and Colombia indicate that extreme hydroclimatic events, as well as climate variability and unpredictability are important for understanding and responding to community vulnerability. The research outcomes clearly identify the need to deliberately plan, coordinate, and implement infrastructures that support community resiliency.Fil: McMartin, Dena W.. University of Regina; CanadĂĄFil: Hernani Merino, Bruno H.. University of Regina; CanadĂĄFil: Bonsal, Barrie. Environment Canada; CanadĂĄFil: Hurlbert, Margot. University of Regina; CanadĂĄFil: Villalba, Ricardo. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro Regional de Investigaciones CientifĂ­cas y TecnolĂłgicas; ArgentinaFil: Ocampo, Olga L.. Universidad AutĂłnoma de Manizales; ColombiaFil: Upegui, Jorge JuliĂĄn VĂ©lez. Universidad Nacional de Colombia; ColombiaFil: Poveda, GermĂĄn. Universidad Nacional de Colombia; ColombiaFil: Sauchyn, David J.. University of Regina; Canad

    Revisiting the warm sub-Saturn TOI-1710b

    Full text link
    The Transiting Exoplanet Survey Satellite (TESS) provides a continuous suite of new planet candidates that need confirmation and precise mass determination from ground-based observatories. This is the case for the G-type star TOI-1710, which is known to host a transiting sub-Saturn planet (Mp=\mathrm{M_p}=28.3±\pm4.7M⊕\mathrm{M}_\oplus) in a long-period orbit (P=24.28\,d). Here we combine archival SOPHIE and new and archival HARPS-N radial velocity data with newly available TESS data to refine the planetary parameters of the system and derive a new mass measurement for the transiting planet, taking into account the impact of the stellar activity on the mass measurement. We report for TOI-1710b a radius of Rp\mathrm{R_p}==5.15±\pm0.12R⊕\mathrm{R}_\oplus, a mass of Mp\mathrm{M_p}==18.4±\pm4.5M⊕\mathrm{M}_\oplus, and a mean bulk density of ρp\rho_{\rm p}==0.73±\pm0.18g cm−3\mathrm{g \, cm^{-3}}, which are consistent at 1.2σ\sigma, 1.5σ\sigma, and 0.7σ\sigma, respectively, with previous measurements. Although there is not a significant difference in the final mass measurement, we needed to add a Gaussian process component to successfully fit the radial velocity dataset. This work illustrates that adding more measurements does not necessarily imply a better mass determination in terms of precision, even though they contribute to increasing our full understanding of the system. Furthermore, TOI-1710b joins an intriguing class of planets with radii in the range 4-8 R⊕\mathrm{R}_\oplus that have no counterparts in the Solar System. A large gaseous envelope and a bright host star make TOI-1710b a very suitable candidate for follow-up atmospheric characterization.Comment: Accepted for publication in A&A. 21 pages, 14 figure

    OSIRIS – The scientific camera system onboard Rosetta

    Get PDF
    The Optical, Spectroscopic, and Infrared Remote Imaging System OSIRIS is the scientific camera system onboard the Rosetta spacecraft (Figure 1). The advanced high performance imaging system will be pivotal for the success of the Rosetta mission. OSIRIS will detect 67P/Churyumov-Gerasimenko from a distance of more than 106 km, characterise the comet shape and volume, its rotational state and find a suitable landing spot for Philae, the Rosetta lander. OSIRIS will observe the nucleus, its activity and surroundings down to a scale of ~2 cm px−1. The observations will begin well before the onset of cometary activity and will extend over months until the comet reaches perihelion. During the rendezvous episode of the Rosetta mission, OSIRIS will provide key information about the nature of cometary nuclei and reveal the physics of cometary activity that leads to the gas and dust coma. OSIRIS comprises a high resolution Narrow Angle Camera (NAC) unit and a Wide Angle Camera (WAC) unit accompanied by three electronics boxes. The NAC is designed to obtain high resolution images of the surface of comet 7P/Churyumov-Gerasimenko through 12 discrete filters over the wavelength range 250–1000 nm at an angular resolution of 18.6 ÎŒrad px−1. The WAC is optimised to provide images of the near-nucleus environment in 14 discrete filters at an angular resolution of 101 ÎŒrad px−1. The two units use identical shutter, filter wheel, front door, and detector systems. They are operated by a common Data Processing Unit. The OSIRIS instrument has a total mass of 35 kg and is provided by institutes from six European countrie

    BOREAS – a new MAX-DOAS profile retrieval algorithm for aerosols and trace gases

    Get PDF
    We present a new MAX-DOAS profiling algorithm for aerosols and trace gases, BOREAS, which utilizes an iterative solution method including Tikhonov regularization and the optimal estimation technique. The aerosol profile retrieval is based on a novel approach in which the absorption depth of O4 is directly used in order to retrieve extinction coefficient profiles instead of the commonly used perturbation theory method. The retrieval of trace gases is done with the frequently used optimal estimation method but significant improvements are presented on how to deal with wrongly weighted a priori constraints and for scenarios in which the a priori profile is inaccurate. Performance tests are separated into two parts. First, we address the general sensitivity of the retrieval to the example of synthetic data calculated with the radiative transfer model SCIATRAN. In the second part of the study, we demonstrate BOREAS profiling accuracy by validating the results with the help of ancillary measurements carried out during the CINDI-2 campaign in Cabauw, the Netherlands, in 2016. The synthetic sensitivity tests indicate that the regularization between measurement and a priori constraints is insufficient when knowledge of the true state of the atmosphere is poor. We demonstrate a priori pre-scaling and extensive regularization tests as a tool for the optimization of retrieved profiles. The comparison of retrieval results with in situ, ceilometer, NO2 lidar, sonde and long-path DOAS measurements during the CINDI-2 campaign always shows high correlations with coefficients greater than 0.75. The largest differences can be found in the morning hours, when the planetary boundary layer is not yet fully developed and the concentration of trace gases and aerosol, as a result of a low night-time boundary layer having formed, is focused in a shallow, near-surface layer.</p

    The TESS-Keck Survey. XI. Mass Measurements for Four Transiting sub-Neptunes orbiting K dwarf TOI-1246

    Get PDF
    Multi-planet systems are valuable arenas for investigating exoplanet architectures and comparing planetary siblings. TOI-1246 is one such system, with a moderately bright K dwarf (V=11.6, K=9.9) and four transiting sub-Neptunes identified by TESS with orbital periods of 4.31 d, 5.90 d, 18.66 d, and 37.92 d. We collected 130 radial velocity observations with Keck/HIRES and TNG/HARPS-N to measure planet masses. We refit the 14 sectors of TESS photometry to refine planet radii (2.97±0.06 R⊕,2.47±0.08 R⊕,3.46±0.09 R⊕, 3.72±0.16 R⊕), and confirm the four planets. We find that TOI-1246 e is substantially more massive than the three inner planets (8.1±1.1M⊕, 8.8±1.2M⊕, 5.3±1.7M⊕, 14.8±2.3M⊕). The two outer planets, TOI-1246 d and TOI-1246 e, lie near to the 2:1 resonance (Pe/Pd=2.03) and exhibit transit timing variations. TOI-1246 is one of the brightest four-planet systems, making it amenable for continued observations. It is one of only six systems with measured masses and radii for all four transiting planets. The planet densities range from 0.70±0.24 to 3.21±0.44g/cm3, implying a range of bulk and atmospheric compositions. We also report a fifth planet candidate found in the RV data with a minimum mass of 25.6 ± 3.6 M⊕. This planet candidate is exterior to TOI-1246 e with a candidate period of 93.8 d, and we discuss the implications if it is confirmed to be planetary in nature

    The United States' next generation of atmospheric composition and coastal ecosystem measurements : NASA's Geostationary Coastal and Air Pollution Events (GEO-CAPE) Mission

    Get PDF
    Author Posting. © American Meteorological Society, 2012. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Bulletin of the American Meteorological Society 93 (2012): 1547–1566, doi:10.1175/BAMS-D-11-00201.1.The Geostationary Coastal and Air Pollution Events (GEO-CAPE) mission was recommended by the National Research Council's (NRC's) Earth Science Decadal Survey to measure tropospheric trace gases and aerosols and coastal ocean phytoplankton, water quality, and biogeochemistry from geostationary orbit, providing continuous observations within the field of view. To fulfill the mandate and address the challenge put forth by the NRC, two GEO-CAPE Science Working Groups (SWGs), representing the atmospheric composition and ocean color disciplines, have developed realistic science objectives using input drawn from several community workshops. The GEO-CAPE mission will take advantage of this revolutionary advance in temporal frequency for both of these disciplines. Multiple observations per day are required to explore the physical, chemical, and dynamical processes that determine tropospheric composition and air quality over spatial scales ranging from urban to continental, and over temporal scales ranging from diurnal to seasonal. Likewise, high-frequency satellite observations are critical to studying and quantifying biological, chemical, and physical processes within the coastal ocean. These observations are to be achieved from a vantage point near 95°–100°W, providing a complete view of North America as well as the adjacent oceans. The SWGs have also endorsed the concept of phased implementation using commercial satellites to reduce mission risk and cost. GEO-CAPE will join the global constellation of geostationary atmospheric chemistry and coastal ocean color sensors planned to be in orbit in the 2020 time frame.Funding for GEO-CAPE definition activities is provided by the Earth Science Division of the National Aeronautics and Space Administration.2013-04-0

    Cold atoms in space: community workshop summary and proposed road-map

    Get PDF
    We summarise the discussions at a virtual Community Workshop on Cold Atoms in Space concerning the status of cold atom technologies, the prospective scientific and societal opportunities offered by their deployment in space, and the developments needed before cold atoms could be operated in space. The cold atom technologies discussed include atomic clocks, quantum gravimeters and accelerometers, and atom interferometers. Prospective applications include metrology, geodesy and measurement of terrestrial mass change due to, e.g., climate change, and fundamental science experiments such as tests of the equivalence principle, searches for dark matter, measurements of gravitational waves and tests of quantum mechanics. We review the current status of cold atom technologies and outline the requirements for their space qualification, including the development paths and the corresponding technical milestones, and identifying possible pathfinder missions to pave the way for missions to exploit the full potential of cold atoms in space. Finally, we present a first draft of a possible road-map for achieving these goals, that we propose for discussion by the interested cold atom, Earth Observation, fundamental physics and other prospective scientific user communities, together with the European Space Agency (ESA) and national space and research funding agencies

    Intercomparison of NO2, O4, O3 and HCHO slant column measurements by MAX-DOAS and zenith-sky UVÂżvisible spectrometers during CINDI-2

    Get PDF
    40 pags., 22 figs., 13 tabs.In September 2016, 36 spectrometers from 24 institutes measured a number of key atmospheric pollutants for a period of 17Âżd during the Second Cabauw Intercomparison campaign for Nitrogen Dioxide measuring Instruments (CINDI-2) that took place at Cabauw, the Netherlands (51.97¿¿N, 4.93¿¿E). We report on the outcome of the formal semi-blind intercomparison exercise, which was held under the umbrella of the Network for the Detection of Atmospheric Composition Change (NDACC) and the European Space Agency (ESA). The three major goals of CINDI-2 were (1) to characterise and better understand the differences between a large number of multi-axis differential optical absorption spectroscopy (MAX-DOAS) and zenith-sky DOAS instruments and analysis methods, (2) to define a robust methodology for performance assessment of all participating instruments, and (3) to contribute to a harmonisation of the measurement settings and retrieval methods. This, in turn, creates the capability to produce consistent high-quality ground-based data sets, which are an essential requirement to generate reliable long-term measurement time series suitable for trend analysis and satellite data validation. The data products investigated during the semi-blind intercomparison are slant columns of nitrogen dioxide (NO2), the oxygen collision complex (O4) and ozone (O3) measured in the UV and visible wavelength region, formaldehyde (HCHO) in the UV spectral region, and NO2 in an additional (smaller) wavelength range in the visible region. The campaign design and implementation processes are discussed in detail including the measurement protocol, calibration procedures and slant column retrieval settings. Strong emphasis was put on the careful alignment and synchronisation of the measurement systems, resulting in a unique set of measurements made under highly comparable air mass conditions. The CINDI-2 data sets were investigated using a regression analysis of the slant columns measured by each instrument and for each of the target data products. The slope and intercept of the regression analysis respectively quantify the mean systematic bias and offset of the individual data sets against the selected reference (which is obtained from the median of either all data sets or a subset), and the rms error provides an estimate of the measurement noise or dispersion. These three criteria are examined and for each of the parameters and each of the data products, performance thresholds are set and applied to all the measurements. The approach presented here has been developed based on heritage from previous intercomparison exercises. It introduces a quantitative assessment of the consistency between all the participating instruments for the MAX-DOAS and zenith-sky DOAS techniques.CINDI-2 received funding from the Netherlands Space Office (NSO). Funding for this study was provided by ESA through the CINDI-2 (ESA contract no. 4000118533/16/ISbo) and FRM4DOAS (ESA contract no. 4000118181/16/I-EF) projects and partly within the EU 7th Framework Programme QA4ECV project (grant agreement no. 607405). The BOKU MAX-DOAS instrument was funded and the participation of Stefan F. Schreier was supported by the Austrian Science Fund (FWF): I 2296-N29. The participation of the University of Toronto team was supported by the Canadian Space Agency (through the AVATARS project) and the Natural Sciences and Engineering Research Council (through the PAHA project). The instrument was primarily funded by the Canada Foundation for Innovation and is usually operated at the Polar Environment Atmospheric Research Laboratory (PEARL) by the Canadian Network for the Detection of Atmospheric Change (CANDAC). Funding for CISC was provided by the UVAS (“Ultraviolet and Visible Atmospheric Sounder”) projects SEOSAT/INGENIO, ESP2015-71299- R, MINECO-FEDER and UE. The activities of the IUP-Heidelberg were supported by the DFG project RAPSODI (grant no. PL 193/17-1). SAOZ and Mini-SAOZ instruments are supported by the Centre National de la Recherche Scientifique (CNRS) and the Centre National d’Etudes Spatiales (CNES). INTA recognises support from the National funding projects HELADO (CTM2013-41311-P) and AVATAR (CGL2014-55230-R). AMOIAP recognises support from the Russian Science Foundation (grant no. 16-17-10275) and the Russian Foundation for Basic Research (grant nos. 16-05- 01062 and 18-35-00682). Ka L. Chan received transnational access funding from ACTRIS-2 (H2020 grant agreement no. 654109). Rainer Volkamer recognises funding from NASA’s Atmospheric Composition Program (NASA-16-NUP2016-0001) and the US National Science Foundation (award AGS-1620530). Henning Finkenzeller is the recipient of a NASA graduate fellowship. Mihalis Vrekoussis recognises support from the University of Bremen and the DFG Research Center/Cluster of Excellence “The Ocean in the Earth System-MARUM”. Financial support through the University of Bremen Institutional Strategy in the framework of the DFG Excellence Initiative is gratefully appreciated for Anja Schönhardt. Pandora instrument deployment was supported by Luftblick through the ESA Pandonia Project and NASA Pandora Project at the Goddard Space Flight Center under NASA Headquarters’ Tropospheric Composition Program. The article processing charges for this open-access publication were covered by BK Scientific
    • 

    corecore