1,157 research outputs found

    Alignement experience in STAR

    Get PDF
    The STAR experiment at RHIC uses four layers of silicon strip and silicon drift detectors for secondary vertex reconstruction. An attempt for a direct charm meson measurement put stringent requirements on alignment and calibration. We report on recent alignment and drift velocity calibration work performed on the inner silicon tracking system

    Massive runaway stars in the Large Magellanic Cloud

    Full text link
    The origin of massive field stars in the Large Magellanic Cloud (LMC) has long been an enigma. The recent measurements of large offsets (~100 km/s) between the heliocentric radial velocities of some very massive (O2-type) field stars and the systemic LMC velocity provides a possible explanation of this enigma and suggests that the field stars are runaway stars ejected from their birth places at the very beginning of their parent cluster's dynamical evolution. A straightforward way to prove this explanation is to measure the proper motions of the field stars and to show that they are moving away from one of the nearby star clusters or OB associations. This approach however is complicated by the large distance to the LMC, which makes accurate proper motion measurements difficult. We use an alternative approach for solving the problem, based on the search for bow shocks produced by runaway stars. The geometry of detected bow shocks would allow us to infer the direction of stellar motion and thereby to determine their possible parent clusters. In this paper we present the results of a search for bow shocks around six massive field stars which were suggested in the literature as candidate runaway stars. Using archival (Spitzer Space Telescope) data, we found a bow shock associated with one of our program stars, the O2 V((f*)) star BI 237, which is the first-ever detection of bow shocks in the LMC. Orientation of the bow shock suggests that BI 237 was ejected from the OB association LH 82 (located at ~120 pc in projection from the star). A by-product of our search is the detection of bow shocks generated by four OB stars in the field of the LMC and an arc-like structure attached to the candidate luminous blue variable R81 (HD 269128). The geometry of two of these bow shocks is consistent with the possibility that their associated stars were ejected from the 30 Doradus star forming complex.Comment: 5 pages, 7 figures, accepted for publication in A&

    Optical Observations of the Binary Pulsar System PSR B1718-19: Implications for Tidal Circularization

    Get PDF
    We report on Keck and Hubble Space Telescope optical observations of the eclipsing binary pulsar system PSR B1718-19, in the direction of the globular cluster NGC 6342. These reveal a faint star (mF702W=25.21±0.07m_{\rm F702W}=25.21\pm0.07; Vega system) within the pulsar's 0\farcs5 radius positional error circle. This may be the companion. If it is a main-sequence star in the cluster, it has radius \rcomp\simeq0.3 \rsun, temperature \teff\simeq3600 K, and mass \mcomp\simeq0.3 \msun. In many formation models, however, the pulsar (spun up by accretion or newly formed) and its companion are initially in an eccentric orbit. If so, for tidal circularization to have produced the present-day highly circular orbit, a large stellar radius is required, i.e., the star must be bloated. Using constraints on the radius and temperature from the Roche and Hayashi limits, we infer from our observations that \rcomp\simlt0.44 \rsun and \teff\simgt3300 K. Even for the largest radii, the required efficiency of tidal dissipation is larger than expected for some prescriptions.Comment: 10 pages, 2 figures, aas4pp2.sty. Accepted for publication in Ap

    Supernova remnant S147 and its associated neutron star(s)

    Full text link
    The supernova remnant S147 harbors the pulsar PSR J0538+2817 whose characteristic age is more than an order of magnitude greater than the kinematic age of the system (inferred from the angular offset of the pulsar from the geometric center of the supernova remnant and the pulsar proper motion). To reconcile this discrepancy we propose that PSR J0538+2817 could be the stellar remnant of the first supernova explosion in a massive binary system and therefore could be as old as its characteristic age. Our proposal implies that S147 is the diffuse remnant of the second supernova explosion (that disrupted the binary system) and that a much younger second neutron star (not necessarily manifesting itself as a radio pulsar) should be associated with S147. We use the existing observational data on the system to suggest that the progenitor of the supernova that formed S147 was a Wolf-Rayet star (so that the supernova explosion occurred within a wind bubble surrounded by a massive shell) and to constrain the parameters of the binary system. We also restrict the magnitude and direction of the kick velocity received by the young neutron star at birth and find that the kick vector should not strongly deviate from the orbital plane of the binary system.Comment: 9 pages, 5 figures, revised version accepted for publication in A&

    The infrared supernova rate in starburst galaxies

    Get PDF
    We report the results of our ongoing search for extincted supernovae (SNe) at near-infrared wavelengths. We have monitored at 2.2 micron a sample of 46 Luminous Infrared Galaxies and detected 4 SNe. The number of detections is still small but sufficient to provide the first estimate of supernova rate at near-infrared wavelengths. We measure a SN rate ofv 7.6+/-3.8 SNu which is an order of magnitude larger than observed in quiescent galaxies. On the other hand, the observed near-infrared rate is still a factor 3-10 smaller than that estimated from the far-infrared luminosity of the galaxies. Among various possibilities, the most likely scenario is that dust extinction is so high (Av>30) to obscure most SNe even in the near-IR. The role of type Ia SNe is also discussed within this context. We derive the type Ia SN rate as a function of the stellar mass of the galaxy and find a sharp increase toward galaxies with higher activity of star formation. This suggests that a significant fraction of type Ia SNe are associated with young stellar populations. Finally, as a by-product, we give the average K-band light curve of core-collapse SNe based on all the existing data, and review the relation between SN rate and far-infrared luminosity.Comment: A&A, in press, 13 page

    Massive runaway stars in the Small Magellanic Cloud

    Full text link
    Using archival Spitzer Space Telescope data, we identified for the first time a dozen runaway OB stars in the Small Magellanic Cloud (SMC) through the detection of their bow shocks. The geometry of detected bow shocks allows us to infer the direction of motion of the associated stars and to determine their possible parent clusters and associations. One of the identified runaway stars, AzV 471, was already known as a high-velocity star on the basis of its high peculiar radial velocity, which is offset by ~40 km/s from the local systemic velocity. We discuss implications of our findings for the problem of the origin of field OB stars. Several of the bow shock-producing stars are found in the confines of associations, suggesting that these may be "alien" stars contributing to the age spread observed for some young stellar systems. We also report the discovery of a kidney-shaped nebula attached to the early WN-type star SMC-WR3 (AzV 60a). We interpreted this nebula as an interstellar structure created owing to the interaction between the stellar wind and the ambient interstellar medium.Comment: Accepted by A&

    Illumination in symbiotic binary stars: Non-LTE photoionization models. II. Wind case

    Get PDF
    We describe a non-LTE photoionization code to calculate the wind structure and emergent spectrum of a red giant wind illuminated by the hot component of a symbiotic binary system. We consider spherically symmetric winds with several different velocity and temperature laws and derive predicted line fluxes as a function of the red giant mass loss rate, \mdot. Our models generally match observations of the symbiotic stars EG And and AG Peg for \mdot about 10^{-8} \msunyr to 10^{-7} \msunyr. The optically thick cross- section of the red giant wind as viewed from the hot component is a crucial parameter in these models. Winds with cross-sections of 2--3 red giant radii reproduce the observed fluxes, because the wind density is then high, about 10^9 cm^{-3}. Our models favor winds with acceleration regions that either lie far from the red giant photosphere or extend for 2--3 red giant radii.Comment: 51 pages, LaTeX including three tables, requires 15 Encapsulated Postscript figures, to appear in Ap

    Overview Of The Inner Silicon Detector Alignment Procedure And Techniques In The Rhic/star Experiment

    Get PDF
    The STAR experiment was primarily designed to detect signals of a possible phase transition in nuclear matter. Its layout, typical for a collider experiment, contains a large Time Projection Chamber (TPC) in a solenoid magnet, a set of four layers of combined silicon strip and silicon drift detectors for secondary vertex reconstruction, plus other detectors. In this presentation, we will report on recent global and individual detector element alignment as well as drift velocity calibration work performed on this STAR inner silicon tracking system. We will show how attention to details positively impacts the physics capabilities of STAR and explain the iterative procedure conducted to reach such results in low, medium and high track density and detector occupancy. © 2008 IOP Publishing Ltd.1193STAR detector overview, H.K.Ackerman et al, NIM A499: 624,2003The STAR time projection chamber: a unique tool for studying high multiplicity events at RHIC, M.Anderson et al, NIM A499: 659,2003The laser system for the STAR time projection chamber, J. Abele et al, NIM A499: 692,2003Correcting for distortions due to ionization in the STAR TPC, G. Van Buren et al.,NIM A566:22-25,2006The STAR Silicon Vertex Tracker A large area Silicon Drift Detector, R.Bellwied et Al., NIM A499: 640, 2003The STAR silicon strip-detector (SSD), L.Arnold et al, NIM 2003 A499: 652, 2003SVT Alignment, STAR SVT review, 2004, Marcelo G. Munhoz, private communicationSensor Alignment by Tracks, V.Karimaki et al,CMS CR-2004/009 (presented at CHEP 2003)Alignment Strategy for the SMT Barrel Detectors, D.Chakborty, J.D.Hobbs, October 13, 1999. DO Note (unpublished

    A comparison of statistical hadronization models

    Full text link
    We investigate the sensitivity of fits of hadron spectra produced in heavy ion collisions to the choice of statistical hadronization model. We start by giving an overview of statistical model ambiguities, and what they tell us about freeze-out dynamics. We then use Montecarlo generated data to determine sensitivity to model choice. We fit the statistical hadronization models under consideration to RHIC data, and find that a comparison χ2\chi^2 fits can shed light on some presently contentious questions.Comment: Proceedings for SQM2003 [7th Int. Conf. on Strangeness in Quark Matter (Atlantic Beach, NC, USA, Mar 12-17, 2003)], to be published in Journal of Physics G (Typos corrected, reference added

    4U 1907+09: a HMXB running away from the Galactic plane

    Full text link
    We report the discovery of a bow shock around the high-mass X-ray binary (HMXB) 4U 1907+09 using the Spitzer Space Telescope 24 ÎŒ\mum data (after Vela X-1 the second example of bow shocks associated with HMXBs). The detection of the bow shock implies that 4U 1907+09 is moving through the space with a high (supersonic) peculiar velocity. To confirm the runaway nature of 4U 1907+09, we measured its proper motion, which for an adopted distance to the system of 4 kpc corresponds to a peculiar transverse velocity of ≃160±115\simeq 160 \pm 115 km/s, meaning that 4U 1907+09 is indeed a runaway system and supporting the general belief that most of HMXBs possess high space velocities. The direction of motion of 4U 1907+09 inferred from the proper motion measurement is consistent with the orientation of the symmetry axis of the bow shock, and shows that the HMXB is running away from the Galactic plane. We also present the Spitzer images of the bow shock around Vela X-1 (a system similar to 4U 1907+09) and compare it with the bow shock generated by 4U 1907+09.Comment: accepted for publication in A&
    • 

    corecore