97 research outputs found

    Unraveling the deposition mechanism in a-C:H thin-film growth : a molecular-dynamics study for the reaction behavior of C3 and C3H radicals with a-C:H surfaces

    Get PDF
    In this mol.-dynamics study, we present the simulated growth of thin a-C:H films using the Brenner [Phys. Rev. B 42, 9458 (1990)] potential. These simulations are relevant for the growth of thin films, grown using low-energy hydrocarbons. In this work, we investigate the reaction mechanisms of both the linear and the cyclic isomers of C3 and C3H on an a-C:H surface. We found that the cyclic species are always more reactive as compared to the linear species, due to their lower stability. The C3 species are found to be more reactive than the C3H species, due to steric hindrance of the H atom, shielding the C atom from the surface. The different mechanisms are discussed. The resulting film properties for different flux ratios of C3 and C3H have also been investigated. It is shown that films as deposited from C3 and C3H have a low d. and show low crosslinking. A clear change in microstructure is obsd. as the ratio between the cyclic and the linear species changes. These simulations provide insights into the reaction behavior of the investigated species, and how this influences the resulting film properties. [on SciFinder (R)

    Strategy for Sustainable Development and Utilization of Sheep and Goat Resources in Serbia

    Get PDF
    The aims of this study were to determine the status of small ruminant production in Serbia and to provide projections for their sustainable use with optimal strategy of genetic improvement of sheep and goats in the future. For sustainable sheep and goat production, it is necessary to know a number of biological, technological, organizational and market factors. Number of sheep in Serbia during the past two decades fell by about 20%.  This  country grows more than 1.7 million sheep. In terms of breed structures, most of the populations are indigenous Pramenka sheep (80%), while the remaining 20% are Tsigai, Merinolandschaf, Ile de France, Pirot improved, Mis sheep, and other less important populations, as well as the crossbreed with foreign and domestic sheep. Interest of goat rearing is constantly increasing in last years for 20-30%.  In regard to the breed structure, the least represented are goats of Alpine breed – approx. 2- 3%, White Serbian goat - 15%, different types of crosses – approx. 35% same as goats of low land Balkan type, and approx. 12% of high land Balkan type. Strategy of sheep and goat breeding programs in Serbia is focused on the improvement of indigenous breeds, because they are less demanding, and most importantly, the input is lower and their products have higher quality. Keywords: sheep; goat; sustainable; resources; meat; mil

    A Review of Recent Developments in Atomic Processes for Divertors and Edge Plasmas

    Full text link
    The most promising concepts for power and particle control in tokamaks and other fusion experiments rely upon atomic processes to transfer the power and momentum from the edge plasma to the plasma chamber walls. This places a new emphasis on processes at low temperatures (1-200 eV) and high densities (10^20-10^22 m^-3). The most important atomic processes are impurity and hydrogen radiation, ionization, excitation, recombination, charge exchange, radiation transport, molecular collisions, and elastic scattering of atoms, molecules and ions. Important new developments have occurred in each of these areas. The best available data for these processes and an assessment of their role in plasma wall interactions are summarized, and the major areas where improved data are needed are reviewed.Comment: Preprint for the 11th PSI meeting, postscript with 22 figures, 40 page

    Siderite micro-modification for enhanced corrosion protection

    Get PDF
    Production of oil and gas results in the creation of carbon dioxide (CO₂) which when wet is extremely corrosive owing to the speciation of carbonic acid. Severe production losses and safety incidents occur when carbon steel (CS) is used as a pipeline material if corrosion is not properly managed. Currently corrosion inhibitor (CI) chemicals are used to ensure that the material degradation rates are properly controlled; this imposes operational constraints, costs of deployment and environmental issues. In specific conditions, a naturally growing corrosion product known as siderite or iron carbonate (FeCO₃) precipitates onto the internal pipe wall providing protection from electrochemical degradation. Many parameters influence the thermodynamics of FeCO₃ precipitation which is generally favoured at high values of temperatures, pressure and pH. In this paper, a new approach for corrosion management is presented; micro-modifying the corrosion product. This novel mitigation approach relies on enhancing the crystallisation of FeCO₃ and improving its density, protectiveness and mechanical properties. The addition of a silicon-rich nanofiller is shown to augment the growth of FeCO₃ at lower pH and temperature without affecting the bulk pH. The hybrid FeCO₃ exhibits superior general and localised corrosion properties. The findings herein indicate that it is possible to locally alter the environment in the vicinity of the corroding steel in order to grow a dense and therefore protective FeCO₃ film via the incorporation of hybrid organic-inorganic silsesquioxane moieties. The durability and mechanical integrity of the film is also significantly improved

    Zika Virus: Medical Countermeasure Development Challenges

    Get PDF
    Introduction: Reports of high rates of primary microcephaly and Guillain–Barré syndrome associated with Zika virus infection in French Polynesia and Brazil have raised concerns that the virus circulating in these regions is a rapidly developing neuropathic, teratogenic, emerging infectious public health threat. There are no licensed medical countermeasures (vaccines, therapies or preventive drugs) available for Zika virus infection and disease. The Pan American Health Organization (PAHO) predicts that Zika virus will continue to spread and eventually reach all countries and territories in the Americas with endemic Aedes mosquitoes. This paper reviews the status of the Zika virus outbreak, including medical countermeasure options, with a focus on how the epidemiology, insect vectors, neuropathology, virology and immunology inform options and strategies available for medical countermeasure development and deployment. Methods: Multiple information sources were employed to support the review. These included publically available literature, patents, official communications, English and Lusophone lay press. Online surveys were distributed to physicians in the US, Mexico and Argentina and responses analyzed. Computational epitope analysis as well as infectious disease outbreak modeling and forecasting were implemented. Field observations in Brazil were compiled and interviews conducted with public health officials

    Large-scale unit commitment under uncertainty: an updated literature survey

    Get PDF
    The Unit Commitment problem in energy management aims at finding the optimal production schedule of a set of generation units, while meeting various system-wide constraints. It has always been a large-scale, non-convex, difficult problem, especially in view of the fact that, due to operational requirements, it has to be solved in an unreasonably small time for its size. Recently, growing renewable energy shares have strongly increased the level of uncertainty in the system, making the (ideal) Unit Commitment model a large-scale, non-convex and uncertain (stochastic, robust, chance-constrained) program. We provide a survey of the literature on methods for the Uncertain Unit Commitment problem, in all its variants. We start with a review of the main contributions on solution methods for the deterministic versions of the problem, focussing on those based on mathematical programming techniques that are more relevant for the uncertain versions of the problem. We then present and categorize the approaches to the latter, while providing entry points to the relevant literature on optimization under uncertainty. This is an updated version of the paper "Large-scale Unit Commitment under uncertainty: a literature survey" that appeared in 4OR 13(2), 115--171 (2015); this version has over 170 more citations, most of which appeared in the last three years, proving how fast the literature on uncertain Unit Commitment evolves, and therefore the interest in this subject

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    Overview of physics results from NSTX

    Full text link
    corecore