267 research outputs found
Quadrupole deformations of neutron-drip-line nuclei studied within the Skyrme Hartree-Fock-Bogolyubov approach
We introduce a local-scaling point transformation to allow for modifying the
asymptotic properties of the deformed three-dimensional Cartesian harmonic
oscillator wave functions. The resulting single-particle bases are very well
suited for solving the Hartree-Fock-Bogoliubov equations for deformed drip-line
nuclei. We then present results of self-consistent calculations performed for
the Mg isotopes and for light nuclei located near the two-neutron drip line.
The results suggest that for all even-even elements with =10--18 the most
weakly-bound nucleus has an oblate ground-state shape.Comment: 20 pages, 7 figure
Prototyping of DSSDs for Particle Tracking and Spectroscopy within the EXL Project at Fair
Prototype double-sided silicon strip detectors (DSSD) of 300 m thickness produced at PTI St. Petersburg (Russia) were tested for the use as position sensitive, and E detectors for tracking and particle identification in the EXL (EXotic nuclei studied in Light-ion induced reactions at the NESR storage ring) setup at the FAIR (Facility for Antiproton and Ion Research) project at GSI. We describe the characteristics of detectors with and strips, respectively. The response of these detectors for Am particles injected either from the p or n side was examined. The test measurements were performed partially at GSI and the University of Edinburgh. A first in-beam test with a proton beam of 50 MeV with the latter two DSSDs and two 6.5 mm thick Si(Li) detectors was also done at KVI Groningen, the Netherlands. The results reveal good spectroscopic properties of these detectors
Coulomb breakup of neutron-rich Na isotopes near the island of inversion
First results are reported on the ground state configurations of the
neutron-rich Na isotopes, obtained via Coulomb dissociation (CD)
measurements as a method of the direct probe. The invariant mass spectra of
those nuclei have been obtained through measurement of the four-momentum of all
decay products after Coulomb excitation on a target at energies of
400-430 MeV/nucleon using FRS-ALADIN-LAND setup at GSI, Darmstadt. Integrated
Coulomb-dissociation cross-sections (CD) of 89 mb and 167 mb up to
excitation energy of 10 MeV for one neutron removal from Na and
Na respectively, have been extracted. The major part of one neutron
removal, CD cross-sections of those nuclei populate core, in its' ground state.
A comparison with the direct breakup model, suggests the predominant occupation
of the valence neutron in the ground state of Na and
Na is the orbital with small contribution in the
-orbital which are coupled with ground state of the core. The ground state
configurations of these nuclei are as Na_{gs (1^+)\otimes\nu_{s,d} and
Na, respectively. The ground state spin
and parity of these nuclei, obtained from this experiment are in agreement with
earlier reported values. The spectroscopic factors for the valence neutron
occupying the and orbitals for these nuclei in the ground state have
been extracted and reported for the first time. A comparison of the
experimental findings with the shell model calculation using MCSM suggests a
lower limit of around 4.3 MeV of the sd-pf shell gap in Na.Comment: Modified version of the manuscript is accepted for publication in
Journal of Physics G, Jan., 201
METSTOR: A GIS to look for potential CO2 storage zones in France
AbstractThe METSTOR project offers a methodology to look for potentially interesting CO2 storage areas in France at the initial stage, before the “site selection” step. Our tool, embodied in a Geographic Information System, is based on an interactive map of CO2 storage capacities. Other relevant information layers are included. The geographic layers are complemented with a series of online technical notices. It seems to be the first open online GIS that offers policy makers, businesses and the public at large an integrated access to that necessary information. Our prototype, limited mainly to the Paris Basin, is released online at www.metstor.fr
Strong neutron pairing in core+4n nuclei
The emission of neutron pairs from the neutron-rich N=12 isotones C18 and O20 has been studied by high-energy nucleon knockout from N19 and O21 secondary beams, populating unbound states of the two isotones up to 15 MeV above their two-neutron emission thresholds. The analysis of triple fragment-n-n correlations shows that the decay N19(-1p)C18∗→C16+n+n is clearly dominated by direct pair emission. The two-neutron correlation strength, the largest ever observed, suggests the predominance of a C14 core surrounded by four valence neutrons arranged in strongly correlated pairs. On the other hand, a significant competition of a sequential branch is found in the decay O21(-1n)O20∗→O18+n+n, attributed to its formation through the knockout of a deeply bound neutron that breaks the O16 core and reduces the number of pairs
Systematic investigation of projectile fragmentation using beams of unstable B and C isotopes
Background: Models describing nuclear fragmentation and fragmentation fission deliver important input for planning nuclear physics experiments and future radioactive ion beam facilities. These models are usually benchmarked against data from stable beam experiments. In the future, two-step fragmentation reactions with exotic nuclei as stepping stones are a promising tool for reaching the most neutron-rich nuclei, creating a need for models to describe also these reactions. Purpose: We want to extend the presently available data on fragmentation reactions towards the light exotic region on the nuclear chart. Furthermore, we want to improve the understanding of projectile fragmentation especially for unstable isotopes. Method: We have measured projectile fragments from C10,12-18 and B10-15 isotopes colliding with a carbon target. These measurements were all performed within one experiment, which gives rise to a very consistent data set. We compare our data to model calculations. Results: One-proton removal cross sections with different final neutron numbers (1pxn) for relativistic C10,12-18 and B10-15 isotopes impinging on a carbon target. Comparing model calculations to the data, we find that the epax code is not able to describe the data satisfactorily. Using abrabla07 on the other hand, we find that the average excitation energy per abraded nucleon needs to be decreased from 27 MeV to 8.1 MeV. With that decrease abrabla07 describes the data surprisingly well. Conclusions: Extending the available data towards light unstable nuclei with a consistent set of new data has allowed a systematic investigation of the role of the excitation energy induced in projectile fragmentation. Most striking is the apparent mass dependence of the average excitation energy per abraded nucleon. Nevertheless, this parameter, which has been related to final-state interactions, requires further study
Quasifree (p, 2p) Reactions on Oxygen Isotopes: Observation of Isospin Independence of the Reduced Single-Particle Strength
Quasifree one-proton knockout reactions have been employed in inverse kinematics for a systematic study of the structure of stable and exotic oxygen isotopes at the R3B/LAND setup with incident beam energies in the range of 300-450 MeV/u. The oxygen isotopic chain offers a large variation of separation energies that allows for a quantitative understanding of single-particle strength with changing isospin asymmetry. Quasifree knockout reactions provide a complementary approach to intermediate-energy one-nucleon removal reactions. Inclusive cross sections for quasifree knockout reactions of the type OA(p,2p)NA-1 have been determined and compared to calculations based on the eikonal reaction theory. The reduction factors for the single-particle strength with respect to the independent-particle model were obtained and compared to state-of-the-art ab initio predictions. The results do not show any significant dependence on proton-neutron asymmetry
Effective proton-neutron interaction near the drip line from unbound states in 25,26 F
Background: Odd-odd nuclei, around doubly closed shells, have been extensively used to study proton-neutron interactions. However, the evolution of these interactions as a function of the binding energy, ultimately when nuclei become unbound, is poorly known. The F26 nucleus, composed of a deeply bound π0d5/2 proton and an unbound ν0d3/2 neutron on top of an O24 core, is particularly adapted for this purpose. The coupling of this proton and neutron results in a Jπ=11+-41+ multiplet, whose energies must be determined to study the influence of the proximity of the continuum on the corresponding proton-neutron interaction. The Jπ=11+,21+,41+ bound states have been determined, and only a clear identification of the Jπ=31+ is missing. Purpose: We wish to complete the study of the Jπ=11+-41+ multiplet in F26, by studying the energy and width of the Jπ=31+ unbound state. The method was first validated by the study of unbound states in F25, for which resonances were already observed in a previous experiment. Method: Radioactive beams of Ne26 and Ne27, produced at about 440AMeV by the fragment separator at the GSI facility were used to populate unbound states in F25 and F26 via one-proton knockout reactions on a CH2 target, located at the object focal point of the R3B/LAND setup. The detection of emitted γ rays and neutrons, added to the reconstruction of the momentum vector of the A-1 nuclei, allowed the determination of the energy of three unbound states in F25 and two in F26. Results: Based on its width and decay properties, the first unbound state in F25, at the relative energy of 49(9) keV, is proposed to be a Jπ=1/2- arising from a p1/2 proton-hole state. In F26, the first resonance at 323(33) keV is proposed to be the Jπ=31+ member of the Jπ=11+-41+ multiplet. Energies of observed states in F25,26 have been compared to calculations using the independent-particle shell model, a phenomenological shell model, and the ab initio valence-space in-medium similarity renormalization group method. Conclusions: The deduced effective proton-neutron interaction is weakened by about 30-40% in comparison to the models, pointing to the need for implementing the role of the continuum in theoretical descriptions or to a wrong determination of the atomic mass of F26
- …