564 research outputs found

    Intersection of three-dimensional geometric surfaces

    Get PDF
    Calculating the line of intersection between two three-dimensional objects and using the information to generate a third object is a key element in a geometry development system. Techniques are presented for the generation of three-dimensional objects, the calculation of a line of intersection between two objects, and the construction of a resultant third object. The objects are closed surfaces consisting of adjacent bicubic parametric patches using Bezier basis functions. The intersection determination involves subdividing the patches that make up the objects until they are approximately planar and then calculating the intersection between planes. The resulting straight-line segments are connected to form the curve of intersection. The polygons in the neighborhood of the intersection are reconstructed and put back into the Bezier representation. A third object can be generated using various combinations of the original two. Several examples are presented. Special cases and problems were encountered, and the method for handling them is discussed. The special cases and problems included intersection of patch edges, gaps between adjacent patches because of unequal subdivision, holes, or islands within patches, and computer round-off error

    Unintentional staining of lens posterior capsule with trypan blue during extracapsular cataract extraction: case report

    Get PDF
    Report of a complication related to the use of 0.1% trypan blue during capsular staining of the anterior crystalline lens capsule in an extracapsular cataract extraction with intraocular lens implantation. The capsular dye was injected using an air-bubble technique, inadvertently, it was done using high pressure dispersing the dye through the zonules leading to a complete losts of red reflex, the following steps of the procedure becoming more difficult after the cataract extraction and causing a temporary disturbance of visual acuity in the postoperative period. In order to avoid this complication, the authors also describe the use of Modified air-bubble technique where dispersive viscoelastic is placed into the iridolenticular space 360° to create a protection barrier.Relato de complicação relacionada ao uso do azul de tripano 0,1% ocorrida ao corar a cápsula anterior do cristalino em facectomia extracapsular com implante de lente intra-ocular. O corante foi injetado sob alta pressão utilizando a técnica de bolha de ar ocasionando a migração deste através da zônula e conseqüente perda do reflexo vermelho no peroperatório dificultando os passos subseqüentes à extração da catarata e comprometendo temporariamente a acuidade visual no pós-operatório. Tendo como objetivo evitar esta complicação, os autores descrevem ainda, o uso da Técnica de bolha de ar modificada no qual o viscoelástico dispersivo é injetado no espaço iridolenticular 360° para compor uma barreira de proteção.Universidade Federal de São Paulo (UNIFESP)Faculdade de Medicina do ABC Departamento de OftalmologiaUniversidade Federal de São Paulo, EPM, São Paulo, BrazilSciEL

    Exotic Properties of a Voltage-gated Proton Channel from the Snail Helisoma trivolvis

    Get PDF
    Voltage-gated proton channels, HV1, were first reported in Helix aspersa snail neurons. These H+ channels open very rapidly, two to three orders of magnitude faster than mammalian HV1. Here we identify an HV1 gene in the snail Helisoma trivolvis and verify protein level expression by Western blotting of H. trivolvis brain lysate. Expressed in mammalian cells, HtHV1 currents in most respects resemble those described in other snails, including rapid activation, 476 times faster than hHV1 (human) at pHo 7, between 50 and 90 mV. In contrast to most HV1, activation of HtHV1 is exponential, suggesting first-order kinetics. However, the large gating charge of ∼5.5 e0 suggests that HtHV1 functions as a dimer, evidently with highly cooperative gating. HtHV1 opening is exquisitely sensitive to pHo, whereas closing is nearly independent of pHo. Zn2+ and Cd2+ inhibit HtHV1 currents in the micromolar range, slowing activation, shifting the proton conductance–voltage (gH-V) relationship to more positive potentials, and lowering the maximum conductance. This is consistent with HtHV1 possessing three of the four amino acids that coordinate Zn2+ in mammalian HV1. All known HV1 exhibit ΔpH-dependent gating that results in a 40-mV shift of the gH-V relationship for a unit change in either pHo or pHi. This property is crucial for all the functions of HV1 in many species and numerous human cells. The HtHV1 channel exhibits normal or supernormal pHo dependence, but weak pHi dependence. Under favorable conditions, this might result in the HtHV1 channel conducting inward currents and perhaps mediating a proton action potential. The anomalous ΔpH-dependent gating of HtHV1 channels suggests a structural basis for this important property, which is further explored in this issue (Cherny et al. 2018. J. Gen. Physiol. https://doi.org/10.1085/jgp.201711968)

    Action of Coriandrum sativum L. Essential Oil upon Oral Candida albicans Biofilm Formation

    Get PDF
    The efficacy of extracts and essential oils from Allium tuberosum, Coriandrum sativum, Cymbopogon martini, Cymbopogon winterianus, and Santolina chamaecyparissus was evaluated against Candida spp. isolates from the oral cavity of patients with periodontal disease. The most active oil was fractionated and tested against C. albicans biofilm formation. The oils were obtained by water-distillation and the extracts were prepared with macerated dried plant material. The Minimal Inhibitory Concentration—MIC was determined by the microdilution method. Chemical characterization of oil constituents was performed using Gas Chromatography and Mass Spectrometry (GC-MS). C. sativum activity oil upon cell and biofilm morphology was evaluated by Scanning Electron Microscopy (SEM). The best activities against planktonic Candida spp. were observed for the essential oil and the grouped F8–10 fractions from C. sativum. The crude oil also affected the biofilm formation in C. albicans causing a decrease in the biofilm growth. Chemical analysis of the F8–10 fractions detected as major active compounds, 2-hexen-1-ol, 3-hexen-1-ol and cyclodecane. Standards of these compounds tested grouped provided a stronger activity than the oil suggesting a synergistic action from the major oil constituents. The activity of C. sativum oil demonstrates its potential for a new natural antifungal formulation

    Effect of the postural challenge on the dependence of the cardiovascular control complexity on age

    Get PDF
    Short-term complexity of heart period (HP) and systolic arterial pressure (SAP) was computed to detect age and gender influences over cardiovascular control in resting supine condition (REST) and during standing (STAND). Healthy subjects (n = 110, men = 55) were equally divided into five groups (21-30; 31-40; 41-50; 51-60; and 61-70 years of age). HP and SAP series were recorded for 15 min at REST and during STAND. A normalized complexity index (NCI) based on conditional entropy was assessed. At REST we found that both NCIHP and NCISAP decreased with age in the overall population, but only women were responsible for this trend. During STAND we observed that both NCIHP and NCISAP were unrelated to age in the overall population, even when divided by gender. When the variation of NCI in response to STAND (\u394NCI = NCI at REST-NCI during STAND) was computed individually, we found that \u394NCIHP progressively decreased with age in the overall population, and women were again responsible for this trend. Conversely, \u394NCISAP was unrelated to age and gender. This study stresses that the complexity of cardiovascular control and its ability to respond to stressors are more importantly lost with age in women than in men

    A low frequency multibeam assessment: Spatial mapping of shallow gas by enhanced penetration and angular response anomaly

    Get PDF
    This study highlights the potential of using a low frequency multibeam echosounder for detection and visualization of shallow gas occurring several meters beneath the seafloor. The presence of shallow gas was verified in the Bornholm Basin, Baltic Sea, at 80 m water depth with standard geochemical core analysis and hydroacoustic subbottom profiling. Successively, this area was surveyed with a 95 kHz and a 12 kHz multibeam echosounder (MBES). The bathymetric measurements with 12 kHz provided depth values systematically deeper by several meters compared to 95 kHz data. This observation was attributed to enhanced penetration of the low frequency signal energy into soft sediments. Consequently, the subbottom geoacoustic properties contributed highly to the measured backscattered signals. Those appeared up to 17 dB higher inside the shallow gas area compared to reference measurements outside and could be clearly linked to the shallow gas front depth down to 5 meter below seafloor. No elevated backscatter was visible in 95 kHz MBES data, which in turn highlights the superior potential of low frequency MBES to image shallow sub-seafloor features. Small gas pockets could be resolved even on the outer swath (up to 65°). Strongly elevated backscattering from gassy areas occurred at large incidence angles and a high gas sensitivity of the MBES is further supported by an angular response analysis presented in this study. We conclude that the MBES together with subbottom profiling can be used as an efficient tool for spatial subbottom mapping in soft sediment environments

    Discussion on “Stable eutectoid transformation in nodular cast iron: modeling and validation”

    Get PDF
    The Minerals, Metals & Materials Society and ASM International 2017 Given that cast irons are multicomponent alloys, the decomposition of the high temperature austenite into ferrite and graphite happens within a finite temperature range and not at an invariant point, as often described schematically. Only a few models explicitly consider the existence of such an austenite–ferrite–graphite range: the contribution under discussion,[1]those that inspired it[2,3] and one previous study from the present author.[4]For kinetics reasons, this latter work explained that ferrite could not grow within the equilibrium three-phase field under continuous cooling; this is in contradiction with the other three reports. The aim of this discussion is first to recall the experimental evidence about ferrite formation during eutectoid transformation of cast iron and then to provide an explanation as to why ferrite starts forming upon cooling only when the temperature of the material is below the equilibrium three-phase field range, as observed experimentally

    Electrochemical behavior of near-beta titanium biomedical alloys in phosphate buffer saline solution

    Full text link
    The electrochemical behavior of three different near-β titanium alloys (composed by Ti, Nb and Sn) obtained by powder metallurgy for biomedical applications has been investigated. Different electrochemical and microscopy techniques were used to study the influence of the chemical composition (Sn content) and the applied potential on themicrostructure and the corrosion mechanisms of those titaniumalloys. The addition of Sn below4wt.% to the titanium powder improves the microstructural homogeneity and generates an alloy with high corrosion resistancewith lowelasticmodulus, beingmore suitable as a biomaterial.When the Sn content is above 4%, the corrosion resistance considerably decreases by increasing the passive dissolution rate; this effect is enhanced with the applied potential.The authors would like to thank the Ministerio de Ciencia e Innovacion of the Spanish Government for the financial support under the project MAT2011-22481.Dalmau Borrás, A.; Guiñón Pina, V.; Devesa Albeza, F.; Amigó Borrás, V.; Igual Muñoz, AN. (2015). Electrochemical behavior of near-beta titanium biomedical alloys in phosphate buffer saline solution. Materials Science and Engineering: C. 48:55-62. https://doi.org/10.1016/j.msec.2014.11.036S55624
    corecore