636 research outputs found

    25 Years of Self-Organized Criticality: Solar and Astrophysics

    Get PDF
    Shortly after the seminal paper {\sl "Self-Organized Criticality: An explanation of 1/f noise"} by Bak, Tang, and Wiesenfeld (1987), the idea has been applied to solar physics, in {\sl "Avalanches and the Distribution of Solar Flares"} by Lu and Hamilton (1991). In the following years, an inspiring cross-fertilization from complexity theory to solar and astrophysics took place, where the SOC concept was initially applied to solar flares, stellar flares, and magnetospheric substorms, and later extended to the radiation belt, the heliosphere, lunar craters, the asteroid belt, the Saturn ring, pulsar glitches, soft X-ray repeaters, blazars, black-hole objects, cosmic rays, and boson clouds. The application of SOC concepts has been performed by numerical cellular automaton simulations, by analytical calculations of statistical (powerlaw-like) distributions based on physical scaling laws, and by observational tests of theoretically predicted size distributions and waiting time distributions. Attempts have been undertaken to import physical models into the numerical SOC toy models, such as the discretization of magneto-hydrodynamics (MHD) processes. The novel applications stimulated also vigorous debates about the discrimination between SOC models, SOC-like, and non-SOC processes, such as phase transitions, turbulence, random-walk diffusion, percolation, branching processes, network theory, chaos theory, fractality, multi-scale, and other complexity phenomena. We review SOC studies from the last 25 years and highlight new trends, open questions, and future challenges, as discussed during two recent ISSI workshops on this theme.Comment: 139 pages, 28 figures, Review based on ISSI workshops "Self-Organized Criticality and Turbulence" (2012, 2013, Bern, Switzerland

    Propagation of sausage soliton in the solar lower atmosphere observed by Hinode/SOT

    Full text link
    Acoustic waves and pulses propagating from the solar photosphere upwards may quickly develop into shocks due to the rapid decrease of atmospheric density. However, if they propagate along a magnetic flux tube, then the nonlinear steepening may be balanced by tube dispersion effects. This may result in the formation of sausage soliton. The aim of this letter is to report an observational evidence of sausage soliton in the solar chromosphere. Time series of Ca II H line obtained at the solar limb with the Solar Optical Telescope (SOT) on the board of Hinode is analysed. Observations show an intensity blob, which propagates from 500 km to 1700 km above the solar surface with the mean apparent speed of 35 km s1^{-1}. The speed is much higher than expected local sound speed, therefore the blob can not be a simple pressure pulse. The blob speed, length to width ratio and relative intensity correspond to slow sausage soliton propagating along a magnetic tube. The blob width is increased with height corresponding to the magnetic tube expansion in the stratified atmosphere. Propagation of the intensity blob can be the first observational evidence of slow sausage soliton in the solar atmosphere.Comment: 5 pages, 4 figures, accepted in MNRA

    Propagating transverse waves in soft X-ray coronal jets

    Get PDF
    Aims. The theoretical model for magnetohydrodynamic (MHD) modes guided by a field-aligned plasma cylinder with a steady flow is adapted to interpret transverse waves observed in solar coronal hot jets, discovered with Hinode/XRT in terms of fast magnetoacoustic kink modes. Methods. Dispersion relations for linear magnetoacoustic perturbations of a plasma jet of constant cross-section surrounded by static magnetised plasma are used to determine the phase and group speeds of guided transverse waves and their relationship with the physical parameters of the jet and the background plasma. The structure of the perturbations in the macroscopic parameters of the plasma inside and outside the jet, and the phase relations between them are also established. Results. We obtained a convenient expansion for the long wave-length limit of the phase and group speeds and have shown that transverse waves observed in soft-X-ray solar coronal jets are adequately described in terms of fast magnetoacoustic kink modes by a magnetic cylinder model, which includes the effect of a steady flow. In the observationally determined range of parameters, the waves are not found to be subject to either the Kelvin-Helmholtz instability or the negative energy wave instability, and hence they are likely to be excited at the source of the jet

    Fractal Reconnection in Solar and Stellar Environments

    Full text link
    Recent space based observations of the Sun revealed that magnetic reconnection is ubiquitous in the solar atmosphere, ranging from small scale reconnection (observed as nanoflares) to large scale one (observed as long duration flares or giant arcades). Often the magnetic reconnection events are associated with mass ejections or jets, which seem to be closely related to multiple plasmoid ejections from fractal current sheet. The bursty radio and hard X-ray emissions from flares also suggest the fractal reconnection and associated particle acceleration. We shall discuss recent observations and theories related to the plasmoid-induced-reconnection and the fractal reconnection in solar flares, and their implication to reconnection physics and particle acceleration. Recent findings of many superflares on solar type stars that has extended the applicability of the fractal reconnection model of solar flares to much a wider parameter space suitable for stellar flares are also discussed.Comment: Invited chapter to appear in "Magnetic Reconnection: Concepts and Applications", Springer-Verlag, W. D. Gonzalez and E. N. Parker, eds. (2016), 33 pages, 18 figure

    Multiwavelength Observations of Supersonic Plasma Blob Triggered by Reconnection Generated Velocity Pulse in AR10808

    Full text link
    Using multi-wavelength observations of Solar and Heliospheric Observatory (SoHO)/Michelson Doppler Imager (MDI), Transition Region and Coronal Explorer (TRACE) 171 \AA, and Hα\alpha from Culgoora Solar Observatory at Narrabri, Australia, we present a unique observational signature of a propagating supersonic plasma blob before an M6.2 class solar flare in AR10808 on 9th September 2005. The blob was observed between 05:27 UT to 05:32 UT with almost a constant shape for the first 2-3 minutes, and thereafter it quickly vanished in the corona. The observed lower bound speed of the blob is estimated as \sim215 km s1^{-1} in its dynamical phase. The evidence of the blob with almost similar shape and velocity concurrent in Hα\alpha and TRACE 171 \AA\ supports its formation by multi-temperature plasma. The energy release by a recurrent 3-D reconnection process via the separator dome below the magnetic null point, between the emerging flux and pre-existing field lines in the lower solar atmosphere, is found to be the driver of a radial velocity pulse outwards that accelerates this plasma blob in the solar atmosphere. In support of identification of the possible driver of the observed eruption, we solve the two-dimensional ideal magnetohydrodynamic equations numerically to simulate the observed supersonic plasma blob. The numerical modelling closely match the observed velocity, evolution of multi-temperature plasma, and quick vanishing of the blob found in the observations. Under typical coronal conditions, such blobs may also carry an energy flux of 7.0×106\times10^{6} ergs cm2^{-2} s1^{-1} to re-balance the coronal losses above active regions.Comment: Solar Physics; 22 Pages; 8 Figure

    Gamma-Ray spectroscopy in the vicinity of Zr-108

    Get PDF
    F. Browne et al.; 4 págs.; 2 figs.; Presented at the Zakopane Conference on Nuclear Physics “Extremes of the Nuclear Landscape”, Zakopane, Poland, August 31–September 7, 2014; PACS numbers: 21.10.Re, 21.10.Tg, 23.20.Js, 27.60.+jThe half-lives of 2+121+ states were measured for 102,104102,104Zr and 106,108106,108Mo to test a new implementation of a LaBr33(Ce) array at the RIBF, RIKEN, Japan. The nuclei of interest were produced through the fission of a 345~MeV/nucleon 238238U beam and selected by the BigRIPS separator. Fission fragments were implanted into the WAS3ABi active stopper, surrounding which, 18 LaBr33(Ce) detectors provided fast γγ-ray detection. Timing between the LaBr33(Ce) array and plastic scintillators allowed for the measurement of half-lives of low-lying states. The preliminary results, which agree with literature values, are presented along with experimental details.This work was supported in part by the UK STFC, the UK NMO and D.O.E. grant No. DE-FG02-91ER-40609Peer Reviewe

    Synthesis and Quantitative Structure–Activity Relationship of Imidazotetrazine Prodrugs with Activity Independent of O6-Methylguanine-DNA-methyltransferase, DNA Mismatch Repair and p53.

    Get PDF
    The antitumor prodrug Temozolomide is compromised by its dependence for activity on DNA mismatch repair (MMR) and the repair of the chemosensitive DNA lesion, O6-methylguanine (O6-MeG), by O6-methylguanine-DNA-methyltransferase (EC 2.1.1.63, MGMT). Tumor response is also dependent on wild-type p53. Novel 3-(2-anilinoethyl)-substituted imidazotetrazines are reported that have activity independent of MGMT, MMR and p53. This is achieved through a switch of mechanism so that bioactivity derives from imidazotetrazine-generated arylaziridinium ions that principally modify guanine-N7 sites on DNA. Mono- and bi-functional analogs are reported and a quantitative structure-activity relationship (QSAR) study identified the p-tolyl-substituted bi-functional congener as optimized for potency, MGMT-independence and MMR-independence. NCI60 data show the tumor cell response is distinct from other imidazotetrazines and DNA-guanine-N7 active agents such as nitrogen mustards and cisplatin. The new imidazotetrazine compounds are promising agents for further development and their improved in vitro activity validates the principles on which they were designed

    Oscillations and waves in solar spicules

    Get PDF
    Since their discovery, spicules have attracted increased attention as energy/mass bridges between the dense and dynamic photosphere and the tenuous hot solar corona. Mechanical energy of photospheric random and coherent motions can be guided by magnetic field lines, spanning from the interior to the upper parts of the solar atmosphere, in the form of waves and oscillations. Since spicules are one of the most pronounced features of the chromosphere, the energy transport they participate in can be traced by the observations of their oscillatory motions. Oscillations in spicules have been observed for a long time. However the recent high-resolutions and high-cadence space and ground based facilities with superb spatial, temporal and spectral capacities brought new aspects in the research of spicule dynamics. Here we review the progress made in imaging and spectroscopic observations of waves and oscillations in spicules. The observations are accompanied by a discussion on theoretical modelling and interpretations of these oscillations. Finally, we embark on the recent developments made on the presence and role of Alfven and kink waves in spicules. We also address the extensive debate made on the Alfven versus kink waves in the context of the explanation of the observed transverse oscillations of spicule axes

    Evolution and Flare Activity of Delta-Sunspots in Cycle 23

    Get PDF
    The emergence and magnetic evolution of solar active regions (ARs) of beta-gamma-delta type, which are known to be highly flare-productive, were studied with the SOHO/MDI data in Cycle 23. We selected 31 ARs that can be observed from their birth phase, as unbiased samples for our study. From the analysis of the magnetic topology (twist and writhe), we obtained the following results. i) Emerging beta-gamma-delta ARs can be classified into three topological types as "quasi-beta", "writhed" and "top-to-top". ii) Among them, the "writhed" and "top-to-top" types tend to show high flare activity. iii) As the signs of twist and writhe agree with each other in most cases of the "writhed" type (12 cases out of 13), we propose a magnetic model in which the emerging flux regions in a beta-gamma-delta AR are not separated but united as a single structure below the solar surface. iv) Almost all the "writhed"-type ARs have downward knotted structures in the mid portion of the magnetic flux tube. This, we believe, is the essential property of beta-gamma-delta ARs. v) The flare activity of beta-gamma-delta ARs is highly correlated not only with the sunspot area but also with the magnetic complexity. vi) We suggest that there is a possible scaling-law between the flare index and the maximum umbral area

    Wnt antagonist secreted frizzled-related protein 4 upregulates adipogenic differentiation in human adipose tissue-derived mesenchymal stem cells

    Get PDF
    With more than 1.4 billion overweight or obese adults worldwide, obesity and progression of the metabolic syndrome are major health and economic challenges. To address mechanisms of obesity, adipose tissue-derived mesenchymal stem cells (ADSCs) are being studied to detail the molecular mechanisms involved in adipogenic differentiation. Activation of the Wnt signalling pathway has inhibited adipogenesis from precursor cells. In our study, we examined this anti-adipogenic effect in further detail stimulating Wnt with lithium chloride (LiCl) and 6-bromo indirubin 3'oxime (BIO). We also examined the effect of Wnt inhibition using secreted frizzled-related protein 4 (sFRP4), which we have previously shown to be pro-apoptotic, anti-angiogenic, and anti-tumorigenic. Wnt stimulation in LiCl and BIOtreated ADSCs resulted in a significant reduction (2.7-fold and 12-fold respectively) in lipid accumulation as measured by Oil red O staining while Wnt inhibition with sFRP4 induced a 1.5-fold increase in lipid accumulation. Furthermore, there was significant 1.2-fold increase in peroxisome proliferator-activated receptor gamma (PPAR ?) and CCAAT/enhancer binding protein alpha (C/EBPa), and 1.3-fold increase in acetyl CoA carboxylase protein levels. In contrast, the expression of adipogenic proteins (PPAR?, C/EBPa, and acetyl CoA carboxylase) were decreased significantly with LiCl (by 1.6, 2.6, and 1.9-fold respectively) and BIO (by 7, 17, and 5.6-fold respectively) treatments. These investigations demonstrate interplay between Wnt antagonism and Wnt activation during adipogenesis and indicate pathways for therapeutic intervention to control this process
    corecore