885 research outputs found

    Natural cement and monumental restoration

    Get PDF
    Natural cement, called "Roman” cement, was invented at the end of the 19th century and played an important role in the development of civil engineering works until the 1860s. More surprisingly, it was also used to restore historic buildings, such as gothic cathedrals. This paper deals with the mineralogy and the durability of natural cement in the particular case of the Bourges Cathedral in France. This study illustrates the interest of this material particularly adapted in stone repair or substitution. Contrary to traditional mortars, the present samples are made of neat cement paste, revealed by the absence of mineral additions as quartz or carbonate sand. Several combined techniques (SEM-EDS, TGA, XRD) were carried out to determine the composition of the hydraulic binder rich in calcium aluminate hydrates. The raw marl at the origin of the cement production contains oxidized pyrites which consist in a potential source of sulphate pollution of the surrounding limestone. The exposition of the cement in urban environment leads to some weathering features as atmospheric sulfation. Finally a petrophysical approach, based on water porosity, capillary sorption and compressive strength, has been performed to demonstrate the durability and the compatibility of natural cement applied as an historical building restoration morta

    Regularization of Linear Ill-posed Problems by the Augmented Lagrangian Method and Variational Inequalities

    Full text link
    We study the application of the Augmented Lagrangian Method to the solution of linear ill-posed problems. Previously, linear convergence rates with respect to the Bregman distance have been derived under the classical assumption of a standard source condition. Using the method of variational inequalities, we extend these results in this paper to convergence rates of lower order, both for the case of an a priori parameter choice and an a posteriori choice based on Morozov's discrepancy principle. In addition, our approach allows the derivation of convergence rates with respect to distance measures different from the Bregman distance. As a particular application, we consider sparsity promoting regularization, where we derive a range of convergence rates with respect to the norm under the assumption of restricted injectivity in conjunction with generalized source conditions of H\"older type

    Ultimate performance of Quantum Well Infrared Photodetectors in the tunneling regime

    Full text link
    Thanks to their wavelength diversity and to their excellent uniformity, Quantum Well Infrared Photodetectors (QWIP) emerge as potential candidates for astronomical or defense applications in the very long wavelength infrared (VLWIR) spectral domain. However, these applications deal with very low backgrounds and are very stringent on dark current requirements. In this paper, we present the full electro-optical characterization of a 15 micrometer QWIP, with emphasis on the dark current measurements. Data exhibit striking features, such as a plateau regime in the IV curves at low temperature (4 to 25 K). We show that present theories fail to describe this phenomenon and establish the need for a fully microscopic approach

    Star Formation in Galaxies Along the Hubble Sequence

    Get PDF
    Observations of star formation rates (SFRs) in galaxies provide vital clues to the physical nature of the Hubble sequence, and are key probes of the evolutionary properties of galaxies. The focus of this review is on the broad patterns in the star formation properties of galaxies along the Hubble sequence, and their implications for understanding galaxy evolution and the physical processes that drive the evolution. Star formation in the disks and nuclear regions of galaxies are reviewed separately, then discussed within a common interpretive framework. The diagnostic methods used to measure SFRs are also reviewed, and a self-consistent set of SFR calibrations is presented as an aid to workers in the field.Comment: 41 pages, with 9 figures. To appear in Volume 36 of the Annual Review of Astronomy and Astrophysic

    Two spectroscopically confirmed galaxy structures at z=0.61 and 0.74 in the CFHTLS Deep~3 field

    Full text link
    Adami et al. (2010) have detected several cluster candidates at z>0.5 as part of a systematic search for clusters in the Canada France Hawaii Telescope Legacy Survey, based on photometric redshifts. We focus here on two of them, located in the D3 field: D3-6 and D3-43. We have obtained spectroscopy with Gemini/GMOS and measured redshifts for 23 and 14 galaxies in the two structures. These redshifts were combined with those available in the literature. A dynamical and a weak lensing analysis were also performed, together with the study of X-ray Chandra archive data. Cluster D3-6 is found to be a single structure of 8 spectroscopically confirmed members at an average redshift z=0.607, with a velocity dispersion of 423 km/s. It appears to be a relatively low mass cluster. D3-43-S3 has 46 spectroscopically confirmed members at an average redshift z=0.739. It can be decomposed into two main substructures, having a velocity dispersion of about 600 and 350 km/s. An explanation to the fact that D3-43-S3 is detected through weak lensing (only marginally, at the ~3sigma level) but not in X-rays could be that the two substructures are just beginning to merge more or less along the line of sight. We also show that D3-6 and D3-43-S3 have similar global galaxy luminosity functions, stellar mass functions, and star formation rate (SFR) distributions. The only differences are that D3-6 exhibits a lack of faint early type galaxies, a deficit of extremely high stellar mass galaxies compared to D3-43-S3, and an excess of very high SFR galaxies. This study shows the power of techniques based on photometric redshifts to detect low to moderately massive structures, even at z~0.75.Comment: Accepted in A&A, final version, shortened abstrac

    Resonances in a spring-pendulum: algorithms for equivariant singularity theory

    Get PDF
    A spring-pendulum in resonance is a time-independent Hamiltonian model system for formal reduction to one degree of freedom, where some symmetry (reversibility) is maintained. The reduction is handled by equivariant singularity theory with a distinguished parameter, yielding an integrable approximation of the Poincaré map. This makes a concise description of certain bifurcations possible. The computation of reparametrizations from normal form to the actual system is performed by Gröbner basis techniques.

    Giant HII Regions in NGC 7479 & NGC 6070

    Get PDF
    We present new results from our search for Giant H\,{\sc ii} Regions in galaxies visible from the southern hemisphere. In this work we study two galaxies: NGC\,7479 and NGC\,6070. Using high-resolution spectra, obtained with different instruments at Las Campanas Observatory, we are able to resolve the emission-line profile widths and determine the intrinsic velocity dispersion of the ionised gas. We detect profile widths corresponding to supersonic velocity dispersions in the six observed H\,{\sc ii} regions. We find that all of them show at least two distinct kinematical components: a relatively narrow feature (between ~11 and ~22\kms) and a broader (between ~31 and ~77\kms) component. Two of the regions show a complex narrow profile in all ion lines, which can be further split into two components with different radial velocities. Whereas the wing broadening of the overall profile can be fitted with a low-intensity broad component for almost all profiles, in one region it was better reproduced by two separate shell-like wings. We have analysed the impact that the presence of multiple components has on the location of the H{\sc ii} regions in the log⁥(L)−log⁥(σ)\log(L) - \log(\sigma) plane. Although the overall distribution confirms the presence of a regression, the precise location of the regions in the plane is strongly dependent on the components derived from the profile fitting.Comment: This manuscript has been accepted for publication in Monthly Notices of the Royal Astronomical Society Main Journal. 16 pages, 11 figure

    A unified framework for the orbital structure of bars and triaxial ellipsoids

    Get PDF
    We examine a large random sample of orbits in two self-consistent simulations of N-body bars. Orbits in these bars are classified both visually and with a new automated orbit classification method based on frequency analysis. The well-known prograde x1 orbit family originates from the same parent orbit as the box orbits in stationary and rotating triaxial ellipsoids. However, only a small fraction of bar orbits (~4%) have predominately prograde motion like their periodic parent orbit. Most bar orbits arising from the x1 orbit have little net angular momentum in the bar frame, making them equivalent to box orbits in rotating triaxial potentials. In these simulations a small fraction of bar orbits (~7%) are long-axis tubes that behave exactly like those in triaxial ellipsoids: they are tipped about the intermediate axis owing to the Coriolis force, with the sense of tipping determined by the sign of their angular momentum about the long axis. No orbits parented by prograde periodic x2 orbits are found in the pure bar model, but a tiny population (~2%) of short-axis tube orbits parented by retrograde x4 orbits are found. When a central point mass representing a supermassive black hole (SMBH) is grown adiabatically at the center of the bar, those orbits that lie in the immediate vicinity of the SMBH are transformed into precessing Keplerian orbits that belong to the same major families (short-axis tubes, long-axis tubes and boxes) occupying the bar at larger radii. During the growth of an SMBH, the inflow of mass and outward transport of angular momentum transform some x1 and long-axis tube orbits into prograde short-axis tubes. This study has important implications for future attempts to constrain the masses of SMBHs in barred galaxies using orbit-based methods like the Schwarzschild orbit superposition scheme and for understanding the observed features in barred galaxies
    • 

    corecore