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Abstract. A spring-pendulum in resonance is a time-independent Hamiltonian model system
for formal reduction to one degree of freedom, where some symmetry (reversibility) is
maintained. The reduction is handled by equivariant singularity theory with a distinguished
parameter, yielding an integrable approximation of the Poseaap. This makes a concise
description of certain bifurcations possible. The computation of reparametrizations from normal
form to the actual system is performed bydBner basis techniques.

PACS number: 0320

1. Introduction

In the study of Hamiltonian systems, normal form theory is often used to distil dynamical
information. In this paper we develop a two-stage normalization process to gain insight
into the global organization of (part of) the phase space, the associated dynamics and
some bifurcations. The first stage involves the standard Birkhoff normal form. It yields
a rotational symmetry enabling a formal reduction to one degree of freedom. The second
stage involves equivariant singularity theory with a distinguished parameter.

As a model system we considerspring-pendulum(see section 2) in 1 : 2 resonance,
where some of the mechanical constants serve as parameters. This enables us to use intuitive
descriptions of trajectories in terms of mechanical motions. As a starting-point for the
calculations a generic 1 : 2 resonant system is used, validating conclusions for all these
systems. Many authors have contributed to this and related problems, see for instance
[7,16,30-32, 34].

The present method gives an integrable approximation of the iso-energetic Bairegar
namely a planar Hamiltonian vector field, to any order in both phase space variables and
parameters. A simpfenormal form is obtained, and we keep track of all transformations
and reparametrizations. In this way we get quantitative information on certain bifurcations.

The planar Hamiltonian is simplified by applying equivariant singularity theory, as we
look for normal forms under a suitable left-right equivalence. It turns out that the hyperbolic
umbilic (D} in Arnol'd’s classification [1]) plays a key role here. This part of the normal
form computation involves repeatedly solving thdinitesimal stability equationwhere
techniques from Gibner basis theory are used.

1 Corresponding author: E-mail: Gerton@math.rug.nl
1 Polynomial in the phase variables.
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Figure 1. Orbits of iso-energetic Poindamap of H° near 1 : 2 resonance, for various values
of detuning parameter 4 2a; (see proposition 5).a) a; = 0.40, () a1 = 0.50 (¢) a3 = 0.68,

(d) a1 = 0.70. For these pictures we useg = 0.07, az = 0.001, other coefficients zero and
H°=0.2.

Although we analyse the example system in some detail, the main emphasis lies on the
method which is applicable to many more systems. Therefore the theory is presented in
greater generality than is needed for the present example. Sections 6, 8 and 9 provide tools
applicable in the context of general (compact) symmetry groups, even thoudh tireup
occuring in the example is simple enough to be handleddyoc methods.

1.1. Sketch of the results

The spring-pendulum lives in a four-dimensional phase space. It is customary to restrict to
energy level sets, thereby reducing the dimension to three. A Péiseation subsequently
reduces the associated vector field to a planar symplectic map. Figure 1 shows a number
of Poincaé map orbits. Coefficients are chosen such that the harmonic truncations of the
constituting oscillators are in approximate 1 : 2 resonance. Our aim is to understand its
structure, and to predict the parameter values for which bifurcations take place.

Using the Birkhoff normal form procedure we find an integrable vector field
approximation to the Poincarmap. The associated planar Hamiltonian has a central
singularity equivalent to the (symmetric) hyperbolic umbiticc? + y?), in the case of the
1 : 2 resonance. A versal deformation of this singularity, with corresponding bifurcation
diagram, is shown in figure 2. The underlying question of this research is: How are figure 1
and 2 related?
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a u1x + uzy?. Across the bifurcation lines saddle-
vvvvvvvvv f/ centre bifurcations occur. Across the parabola

uy + 3u§ = 0 Hamiltonian pitchfork bifurcations
occur due tdZ, symmetry.

Figure 3. Bifurcation diagram of the planar

reduced systen#”. Grey areas denote portions
of phase or parameter space that do not
correspond to phase points of the original
system.

Figure 3 graphically presents a partial answer. It shows which parts of the parameter
space(ui, uz) and phase space, are actually visited by the system. By purely topological
arguments, it i@ priori clear that some parts of phase and parameter space do not correspond
to physical states or configurations. This is reflected in the normalizing transformations we
compute.

We in fact obtain a quantitative answer, in the small-energy region, in the form of
bifurcation equations in the original parameters. These results are checked against numerical
estimates, with good agreement.

1.2. Overview of the reduction with distinguished parameters

One problem occurs in the naive application of equivariant singularity theory. The (formal)
rotational symmetry of the Birkhoff normal form gives rise to a formal integiial the planar
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Table 1. Overview of reductions and normalizations.

Section 2 3 3.2 4 5 6
Birkhoff Planar Central Versal BCKV
Context Original normal form reduction normal form deformation normal form
System HO H" H" H¢ H" HB
Phase space R* R* D? R2 R2 R2
Coefficients  a;,i >1 bi,i =2 bi,i >2 d; — a;
Parameters — by by, A ci, A Ui, U A, b1
Symmetry Zip X Lo Zp x S1 Zo Zp Zo Zo

system. This parameterdistinguishedin the sense that it is a function on the original phase
space. lItis natural not to allow reparametrizations to depend on this distinguished parameter,
in contrast to ordinary equivariant singularity theory; see also remark 2. Second, the variable
A, which can be interpreted as angular momentunaariable, is always positive. This gives
special significance to the value= 0, which we also want to preserve. Transformations
respecting both the distinguished nature as the zero levelare calledBCKV-restricted
reparametrizationg6, 10].

Theorem 9 implements this restriction, and yields a versal deformation of the normalized
system via BCKV-restricted reparametrizations:

x(2+ ) + (A1 + uD)x + (a2 + up)y2

Here A; andu; are distinguished and ordinary parameters, respectively. One consequence
of the theorem is that a versal deformation requires at least two distinguished parameters,
but we have only one at our disposal. This problem can be attacked by the path formalism.

The resulting normal form, presented in theorem 13, involves coefficients that are functions

of the available parameters. They describe the path traced out by the system through the
parameter space of the versal deformation.

The BCKV normal form is built on the normal form in the ordinary context, together
with the reparametrizations connecting it to the original system. See theorem 7 for these
reparametrizations. The formal calculations involved make essential usedbbh&rbasis
techniques, and are a main focus of the present paper. It is dealt with in sections 8 and 9.

1.3. Outline of the procedure

To clarify the various contexts, phase spaces and systems from the outset, we give here
a concise but detailed outline of the procedure leading to the BCKV normal form. This
section is summarized in table 1.

The starting-point is the two degree-of-freedom Hamiltontgthwith a Z, x Z, spatio-
temporal symmetry, depending on several coefficients

After Birkhoff normalizing, the system is renamédl’ and has acquired a form&ft
symmetry. It contains one of th&, symmetries as a subgroup, resulting iZa x St
symmetry. Also, this step singles outdatuning parametemeasuring the deviation from
the 1 : 2 resonance, around which the Birkhoff procedure is performed. This parameter
is called b;, and can be controlled by changing, for example, the spring constant. For
notational convenience, the other coefficients are renamed> 2.

H" has two independent integrals of motioA:" itself, and the formal integral, the
variable conjugate to th&' symmetry. Trajectories lie on level sets Bf, which, close to
the elliptic equilibrium, are 3-spheres Rf".
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After dividing out theS' symmetry, on a section with nonzero and fixed, we g&f
(see section 7.1), which we represent by a disk with boundary. The boundary is an artefact
of the singular coordinate transformation. It is the image of a single point, and is called
the singular circle The formally reduced system obtained is denoted#tyy It has oneZ,
symmetry left.

From here on we forget about the boundary introduced by the coordinate transformation,
and consider the system in a full neighbourhood of the origiiR4n The system is now
subjected to a transformation bringing the central singularity into a simple formZhe
symmetric hyperbolic umbilic. We are left with a deformatiéff of this singularity, in
terms of the parametetg and .

There exists a versal deformation of the hyperbolic umbilic with only two parameters.
(In the nonequivariant case one finds three.) This deformation is denotdé.biyn section 5
we find the reparametrizations that indugg& from HY. This step is computationally
involved, indeed the second half of this paper is largely devoted to it. In this step we
employ Gbbner basis techniques to efficiently compute the required morphisms.

Finally, we use the reparametrizations of section 5 to compute the BCKV-restricted
normal formH?® of our system.

1.4. Formal aspects: a perturbation problem

The transformations performed on the system are all either conjugacies or equivalences (i.e.
conjugacies modulo time scalings), except for one: the Birkhoff transformation. It provides
a formal conjugacy.

By theorems of Borel and Schwarz (see [5, 21, 16]), this formal conjugacy can be lifted
to a C* transformationg, uniquely defined modulo a flat perturbation. The normalized
Hamiltonian H® o ¢ is therefore also defined up to a flat perturbation. This perturbation is
generally notS* symmetric, so that® o ¢ only respects the acquirédl symmetry up to
flat terms.

These flat terms account for the differences between the integrable approximation
(figure 3) and the numerical pictures (figure 1). Normalization reveals the dynamical
skeletonof the iso-energetic Poindarmap, describing the actual system accurately for
small energy, but disregarding details like transversality of stable and unstable manifolds
(and chaos), and subharmonics. Subharmonics can be found by similar means though; see
[9]. For more remarks on this flat perturbation problem, see [6, 8, 10].

1.5. Notation

Parameters and coefficient3he dynamical systems we investigate depend on a number of
variables. Certain variables are supposed to be constant during the evolution of the system,
for example the mass of a pendulum. Throughout, we reserve the ceefigcientfor a
‘constant variable’ that can take on arbitrary values, except possibly a few isolated ones that
are excluded by nondegeneracy conditions. The npanameteris reserved for ‘constant
variables’ that aresmalt for our system these are the distinguished parametand the
detuning parametdr; = 1 — 2q;.

Hamiltonian contexts. The Hamiltonian systemH we consider appears in many
incarnations, depending on the context. We denote the appropriate context by a superscript,
e.g. H for the original HamiltonianH" for the Birkhoff normal form.

Big-oh notation. We use the notation Qx, y|"*) to denote terms of total order and
higher inx andy. In standard notation, this would bg|®|" +|y|") = O((|x|+]|y])"). Also,
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Figure 4. The spring-pendulum with its symmetry-axis.

e.g. A|c;, A|") stands for Qlcy|” + |c2|” + - - - + |A]"), whenc is a vector of coefficients.
This will be clear from the context.

2. The spring-pendulum system

This section introduces the system that is used as a leading example: a planar pendulum
suspended by a spring constrained to move along the vertical axis. It is a typical two degree-
of-freedom Hamiltonian system with &, x Z, (time-reversal and reflection) symmetry.
Introducing this specific example allows us to describe the dynamics in terms of mechanical
motion. The results obtained are more generally valid, however. This will be made precise;
see also the remarks about proposition 1.

We now describe the system. Masses are attached to both ends of the rod, while both rod
and spring are massless. The configuration is given by the displacement of the suspension
point and the angle of the pendulum with the vertical axis, denoted;bgnd x,. The
potential energy i/ (x1, x2) = —mogl COSx, + %azxf when the origin is suitably chosen.

The m; denote masses\? = m1 + my, g the gravitational acceleration,the length of
the pendulum and? the spring coefficient. The Hamiltonian of the system, expressed in
configuration coordinates; and their conjugates; reads

IPmay? + M?y5 — 2lmay1y2 Sinx,
mal?(2M? + ma[cos(2xp) — 1) -

2.2

1
H(x,y) = Sa’x] — magl cOSX + (2.1)

This Hamiltonian exhibits twd,-symmetries: a time-reversible symmetry denotedlhy
and reflection symmetry in the vertical axis, denotedSbyHere

T : (x1,x2, y1, ¥2) => (X1, X2, —y1, —¥2) 2.2)
S0 (x1, X2, y1, y2) B> (X1, —X2, y1, —Y2). '

In the following, we use Cartesian canonical coordinates; as well as complex variables
zi, z; and Hamiltonian polar coordinatds, ¢;. The relations between those coordinates
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and the symmetry maps are as follows:

zi=x; +iy; =/2L;€ Li=x —iy = /2L
1 i Vi 1 — 1 2 2
; = — log — = arctan— L ==z,7; = =(x :
10} T g : - 21 Z 2(xl +y7)
1 . 1 _ 2.3
x; =/ 2L; cos¢; = E(Zi +2i) yi =+/2L;sing; = Z(Zi - Z) 23)
T : (z1, 21,22, 22) = (21, 21, 22, 22) (L1, ¢1, L2, ¢2) = (L1, —¢1, L2, —¢2)
S 1 (z1, 21, 22, 22) > (21, 21, —22, —22) (L1, ¢1, L2, ¢2) = (L1, ¢1, L2, g2 + 7).

We now write H as a Taylor series in the; and y; variables, and apply a rescaling of
variables and time to tidy up the quadratic terms.

Proposition 1. Provided thatm, # 0 anda # 0, by a rescaling of variables and time we
can bring the Hamiltonian (2.1) into the form

2 2 2 2
X1+ x5+
HOx, y) = =2 5 1 + a2 5 Y2 _ 8asxoy1y2 — 16c13)c§1 + 16a4x§yf + 16a5x§y§
+32a6x§y1y2 + 64a7xg + 64a8x§yf + 64agx§y§ (2.4)

moduloO(|x, y|”) terms, with symplectic formdx A dy. Herea; = {L}f anday; = %, and
HPY is invariant underS and T.

From now on, (2.4) is used as a starting point, with no conditions on the coefficients
a;. This system has the same qualitative form as the spring-pendulum system, in fact, for a
proper choice of the coefficients the latter is a high-order perturbation of (2.4) (modulo
a rescaling).

The physical origin of the system imposes some constraints on the coefficients, for
examplea; > 0 anda, > 0. We will not use these. Instead, we keep an eye on the
nondegeneracy conditions encountered during the calculations, allowing thetherwise
take arbitrary values. Some of these conditions are implied by the physical constraints.

3. Formal normalization and reduction to one degree of freedom

This section discusses the application of the Birkhoff normal form procedure #@,theZ,
symmetric HamiltonianH° (see (2.4)) around the 1 : 2 resonance. Then we discuss the
subsequent reduction of normalized Hamiltoniah to a one degree-of-freedom (i.e. planar)
systemH”, depending on an extra, distinguished, parameter.

For introductions to the Birkhoff normal form procedure, see e.g. [7, appendix 7,
25, chapter VII]. For a historical overview see [34, section 3.5]. It is well known how to
implement Birkhoff normal form computations in a computer [14, 15, 23] and we do not
discuss this here, we only present a concise overview.

The normal form computation is done in the ring of formal power series; see section 1.4
for relevant remarks.

3.1. The normal form procedure for a general two degree-of-freedom system

Here we treat the Birkhoff normal form for general two degree-of-freedom Hamiltonian
systems, with semisimple quadratic part, near resonance. After this we specidlize 7
spatio-temporal symmetric systems.
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Assume that a Hamiltonia®/ has a critical point at 0, and |¢f, denote its quadratic
part. The adjoint action ofH, is defined in terms of the Poisson bracket, namely
ady, := {-, H»}. If the adjoint action is semisimple (which it is in the cases we consider), the
Birkhoff normal form is in kerag,, implying that H, is conserved by the flow generated
by the normalized Hamiltoniafi{”. The kernel is an algebra with respect to ordinary
addition and multiplication of formal power series, as;ath a derivation. A minimal set
of generators for this algebra is calledH@bert-basis

H" ¢ kerady, also means thal” is invariant under thé&!-action generated byi,,
which is A; : (z1,22) = (e1%z1,€"67;), £ € St = R/27Z. The Hilbert basis just
mentioned is precisely the set of basic invariant polynomials for this action. If the group
action acts diagonally there existonomial generators.

Proposition 2. Let H, = iz171 + iwz272, Wherew > 0, then a Hilbert-basis for the algebra
kerady, is given by:

(1) z1Z1, 2222, if 0 € Q,

(2) 121, 2272, 2075, 202, if 0 = g, p.q > 0,gcdp, q) =1

In our case, th&, x Z, spatio-temporal symmetries lead to a smaller kernel.

Proposition 3 (Birkhoff normal form). Let H° be a Hamiltonian onR* with vanishing
linear part, invariant underS and T as defined in (2.2). LeHS = iz171 + iwz272 be
its quadratic part, and assume that = g = g with Q even, P, Q, p,qg > 0 and
gcd(P, Q/2) = gcd(p, ¢) = 1. Then there exists a formal symplecficand T-equivariant
coordinate transformatiowp such that

H" := Ho ¢ = HY + fo(z1Z1, 2272, 24 25 + 21 29),
where the Taylor series ofy(¢1, ¢2, ¢3) starts off asu¢s + h.o.t. The quadratic partdy is
conserved under the flow @&f”, i.e. H" is invariant under theS!-action Ag 1 (z1,22)

(e z4, e z,). This action is nondegenerate except on the axes 0 andz, = 0 on which
points have isotropy subgroup (stabilizé£) andZ, respectively.

(In general the problem of finding basic invariant polynomials for a given group action is
a difficult one; see e.g. [33].)

Proof. By proposition 2, a general element of kepadcan be written in the form
f=g1+2078g2+70 25 gs, Whereg; = g;(z121, 2272, 25 25 +78 25, 2878 —7022). Suppose
f is invariant underS andT. If ¢ is even,Q = g, and we can choosg = g3 = 0. On
the other hand, if; is odd, invariance off implies thatg, = g3 = 0, by invariance of the
gi undersS; see (2.3).

Invariance ofg; under T implies thatg; depends on the square of the argument
P78 — 2029, which equals(zzd + z0z9)% — 4(z1Z1)" (22%2)2. This proves thatiZy,
2272 andzlz§ + zPz§ generate thes- and T-invariant part of ker ag,. 0

The resonance of the system in the proposition above is referred to &s:tlleresonance.
In particular we refer to the 2 : 2 resonance instead of 1: 1.

3.2. Reduction to one degree of freedom

The system, in the incarnatial”, now has acquired an additional (form&b-symmetry,
with action (z1, z2) > (€P%z4, €9%z,) for £ € S* = R/27Z, and corresponding conserved
quantityHg = 7171 + wz272. This symmetry enables us to formally reduce to a one degree-
of-freedom system.
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We first express the normalized system in Hamiltonian polar coordinates;; see
(2.3):

H'(L,$) = L1+ oLy + fi(L1, Ly, LT? L2 cox Py — 02)). (3.1)

Here, and elsewhere in this section, the functiofisare of the same form agp in
proposition 3, differing only by innocent linear changes of variables.pLet P/ gcd P, Q),
g = Q/gcd P, Q), and letr, s be integers such thatr — gs = 1. Consider the following
symplectic coordinate change:

=G (8)- )
Ly g9 p)\L2 ¢2 - T b2/
The transformed system and symmetries now read:

-~ 1- -~ - - - - -
H'(L,¢) = ng + fo(L1, Lo, (pL1 — sL2)*/?(—q L1 + r L) 22 cosged P, Q)¢1)),

T: (¢1.¢2) > (—1, —2),
S (1, ¢2) > (p1+qm, P2+ 1),
St-action :(¢1, ¢2) = (¢1, b2 + £/,
from which it is manifest thai , is conserved (since the conjugate variapjeis cyclic);
indeed,L, = qHZO. We now reduce to a planar system by dividing out $desymmetry
generated by.,, viewing L, as adistinguished parametewe denote the planar reduction
of H" we get in this way byH". Calling L, a parameter is justified if we consider only
small deviations from the system’s lower equilibrium, for then the system has little energy,
so H", and thereforel,, is small; see also remark 2. From here on, we wiitfor the
parameter. _ 3 . y

Next, we apply the translatiod, = Li — %A, ¢1 = ¢1. This is a symplectic
transformation in the current planar context. The Hamiltonian becomies= % +

fa(La, 2, Ly"*(L1 — 22)972 cogged P, Q)¢n)).
Finally, we retirn to Cartesian coordinates. Dropping the constant and hence
dynamically irrelevant term./¢, we get the following.

Proposition 4. Under the assumptions of proposition 3, it be a Hamiltonian in Birkhoff

normal form. There exist coordinates y, A, ¢ on R* such thati is constant on orbits of

H", and the projections of those orbits onto the y)-plane coincide with those of a planar
Hamiltonian systenH" (x, y), with parameter. and independent af, of the form

, 2.\
Peven:H' = f, (x2+y2,/\, @+ yH 2% - )P (x +y2 - E) ;

B 23\ 2/2
P odd: H" = f4 (x2+y2,k,(x2+y2)1321x <x2+y2—p—q> ,

Wheref“({lv §2’ §3) = b1§3 + hOt

Remark 1 (singular circle). The coordinate transformation to Hamiltonian polar coordi-
nates used in (3.1) is singular at the coordinate aes= 0 andL, = 0. These axes
becomele —sL, = 0 and— qu +rL, = 0 in the transformed coordinates, and af-
ter translationL; = 0 andL; = A/pq. The first singularity is removed by returning to
Cartesian coordinates in the plane. The second singularity is calledirthalar circle

At this circle L, = 0 implying that the coordinateé, is ill-defined, and therefore so is
1 = pd1 — q¢o. In particular this implies thaH” is constant there; see also section 7.1.1.
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Remark 2 (the parameter A). The adjectivedistinguishedrefers to the fact that stems

from the phase space df”, not from the coefficients;. If we are interested in the
organization of level sets af” in R* (i.e. includingx and its cyclic conjugate to the planar
reduced phase space), we may not let reparametrizations of ordinary parameters depend
on the distinguished parameter, see section 6. This should be contrasted to the point of
view taken in section 5, where we merely classify the organization of level s&$, iand

where it is permissible to treat as an ordinary parameter. Note that in either setting we

do not allow reparametrizations afto depend on phase variables, i.e. we regard it as a
true parameter.

Remark 3 (symmetries).Wheng is even, the acquire8! normal form symmetry group
contains the reflectiofl,-symmetryS as a subgroup. Before reduction the symmetry group
is thereforeS* x Z, x Z, or S x Z,, depending on the parity af, leading to a symmetry
groupZ, or Z, x Z, for the reduced system.

3.3. Planar reduction off” around1l : 2 resonance

We now present the results of the normal form computations starting from the Hamiltonian
(2.4) for the 1 : 2 resonance.
The coordinate transformation in Hamiltonian polar coordinates takes the form

Li=Ly, A =2L1+ Lo, $1 = p1 — 292, $2 =2

with singularities atZ; = 0 and L; = 1/2, where is the distinguished parameter.
Geometrically, the new coordinafy becomes constant in the unperturbed= %) linear
flow. In complex coordinates, the transformation reads

|z , 72424
n=722, n=z/1-2 s 3.2)
22 2222

where z; are the old complex coordinates. The singular circle in these coordinates is
297 = %1/22’2.
Proposition 5 (planar reduction). After Birkhoff normalization and reduction to one degree

of freedom, for thel : 2 resonanced; around%), up toO(|z;, z;|7) terms, the Hamiltonian
(2.4) takes the form

1
H' = bit1 +boto + 503+ bal? + bst1ls + bel?
3

+b78183 + bglals + bt + b1otEtr + b11818E + bats + b1atd

where¢; = x? + y2, &, = A, {3 = x(x2 + y? — 1), and the coefficients for the terms up to
order four in the original phase coordinates are given by

1 . . 1 .
b1=§—al, by = ay; b3=\3/_2,
42
bs=8 2 _ _3a3— : bs = 8(6a — 2as);
4 <1+2a1 3 a4+a5) 5 (6az + ay 5)
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The special form for the coefficient g§ was chosen for notational convenience, as will
become apparent below. The coefficiéntvanishes at resonance; (= %). It is considered
small throughout, and is referred to detuning parametermeasuring the deviation from
the resonant frequency.

Remark 4. The first nondegeneracy condition ist12a; # 0. If we continue to normalize
to higher orders, more conditions of the foem## p/q are found, where/q € Q.

4. Normalization using singularity theory

We have reduced the original system near 1 : 2 resonance to a planar Hamiltonian
H" depending on several coefficieris a detuning parameter; and one distinguished
parameteri. Because it is planar now, we may use genef&-gymmetric) planar
morphisms (as opposed to symplectic ones) to further normalize our system. The resulting
normal form is not dynamically conjugate, betjuivalentto the original system, that is,
conjugate modulo a state-dependent reparametrization of time; see [10, 6] and in particular
[8] for more details on this method.

The central singularity is defined by the parameter valyes 0 (resonance) and = 0.
At this central singularity the Hamiltonian still depends on the coefficients > 1. In this
section we bring the central singularity in the normal forex? + y2), which is independent
of the b;. This singularity is theZ,-invariant hyperbolic umbilic (see [29]), in Arnol'd’s
classification denoted bp; .

First, by a simple scaling transformatign we can achieve that the Hamiltonian takes
the formH" := H] _, oo ¢1 = x(x?+y?) + hot.

Remark 5 (nondegeneracy conditions)This is possible provided that the coefficient of
the third-order terms (irx, y) are nonzero. This translates into the conditipn# 0; see
proposition 5.

Next, we look for a near-identity planar morphisgnremoving the h.o.t. fromH"’.
This morphism should respect tt#&-symmetry (x, y) — (x, —y). By a generalization
of [24,theorem 111.5.2] that incorporates the symmetry gro@fi; is isomorphic, by a
Z,-equivariant morphism, ta(x? + y?); for details see appendix A.

Now that existence ap is guaranteed, how do wsmputeit? We employ the following
iterative approach. Set;(x) = x, and assume that

H" o ¢p = x(x® + y%) + O(|x, y[F3) (4.1)

for somek. To find ¢ with k' = k+ 1 we setpy = ¢ + Y o;t;, where{r;} span the space

of Z,-equivariant terms inx, y of degreek’, andq; the coefficients to be determined. In
the present case, equation (4.1) ko= k' is then satisfied for terms of degréé+ 2 and
lower, and for degreé’ + 3 it forms a, generally underdetermined, set of linear equations
for the «;. (The scaling transformation—replacigg—can be found analogously, but then
the equations are nonlinear.) Summarizing we have the following proposition.

Proposition 6. There exists a coordinate transformatign: R? — R? such thatH¢ =
H'" o ¢ is of the form
HE = (14 c)x(x? + y?) + co(x® + y?) + cax? + cax®y? + c5y*

+)»(d1x + d2X2 + d3y2 + d4)63 + d5xy2 + deXA + d7x2y2 + d8y4)

+22(d1ox + diax? + d1ay?)
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modulo terms ofO(|x, y[®), O(lc;, A[®) and O(|x, y|®|c, A|?). Here d; = d;(b;) are
coefficients, and; = c;(b;) are parameters, all of them polynomial expressions inithe
Thec; vanish ath; = 0.

Proof. See appendix A.1. O

We say thatH®¢ is in central singularity reduced formi.e. at the central singularity
b1 = A = 0 it reduces to the normal form(x? + y?).

Remark 6 (dependence ofp on coefficients).We considerp in the above proposition to
be fixed i.e. independent of parameters. It does depend on the coeffidignts, ...
however, sinced"|;—,,—o also depends on those.

Some leading order parameters and coefficients are:

1 b1b2
= —— b1b5ba, = =3
c1 96 10304 c2 4
1 1, )
dy = 2 dr = §b3(b4 + 3bs), d3 = b5(b4 + bs).
3

5. Inducing H from a universal deformation

This section forms the core of the paper, in which we achieve our goal, namely finding the
normalizing transformations explicitly. At this point our systei? is reduced toH¢, a
deformation of the central singularity(x?+ y?), depending on parametersandc;, and on

a number of coefficients;. This singularity is of codimension two, with versal deformation
H" := x(x? 4+ y?) + u1x + u»y?; see figure 2. We are to find transformations that induce
H¢ from the modelH*".

For the moment we disregard the distinguished nature trieating it, like thec;, as an
ordinary parameter; see remark 2. The results of this section are used in section 6) where
is treated as a distinguished parameter. For notational convenience we. writg here.

In appendix C we show thaf* (x, y, u1, us) ‘= x(x2 4 y?) +u1x + u»y? is a universal
Z,-equivariant deformation of the singularityx, y) — x(x2 + y?); see [26, 4]. It follows
that there exists a pair of morphisms (transformatigps)y), whereg : R? x R x R — R?
is a parameter-dependent coordinate transformation, @and R¢ x R — R? is a
reparametrization fronic;, d;) to (u1, u2), such that

Hu(¢(x’ Yy, Ci, di)9 p(civ dl)) = Hc(xs Yy, Ci, dl)

These morphisms obey the following additional constraigitss Z,-equivariant, and both
¢ andp are trivial at the central singularity, i.e.(x, y,0,d;) = (x, y) andp(0, d;) = 0.

In appendix C we give a hecessary and sufficient condition for versality of a deformation.
This is the well knowninfinitesimal stabilityequatiorf adapted to our equivariant context.
For the particular case aff* this condition boils down to: for ever¥,-invariant germg
vanishing at the origin there should exit-invariant germsy; (x, y), i = 1, 2, 3 and real
numbersgy, B, such that

9 3 9
i (x, y)xa_f + oz (x, y)yz—f + a3(x, y)y—f + B1x + Boy? = g(x, y). (5.1)
X ox ay

1 Recall that theZ,-symmetry is given by(x, y) — (x, —y).
i See [19]. Necessity of this condition is immediate by considering deformations of theHdim, y, 0, 0) +
c18(x, y) for general Zy-invariant) g; see [24, proposition 1V.3.2].
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Here f is the central singularity(x? 4+ y?). For this f the condition is indeed satisfied
(see appendix C.1). Starting from the infinitesimal stability condition, versality is proved
by invoking the Mather—Malgrange preparation theorem [24, 28].

We are, however, interested not so much in existence but rather in aatoatiguting
the morphismsp and p, up to a certain degree. There exists a rather straightforward
algorithm to do so [22], which repeatedly uses the fact that we can solve equations of the
form (5.1). The solutions; and g; form the building blocks ofp and p. This algorithm
is presented in section 8. It can be regarded as a constructive proof of the existence of a
formal solution for¢ and p.

Our ability to computep and p now rests on our ability to compute solutions to (5.1).
This can be done efficiently using ideas fromdBmer basis theory. In section 9 we present
the algorithm. Here we give the results.

Proposition 7. Let H¢ be a planar Hamiltonian depending on parameterand coefficients
d;, with central singularityx(x® + y?) atcp = ¢1 = --- = 0, symmetric under thé&,-
action (x,y) — (x,—y). A versal deformation of this central singularity is given by
H" := x(x° 4+ y?) + u1x + upy?, so that there exisp and p such that

H® = H"(¢(x,y,ci,dp), pi(ci, di), pa(ci, di)) (5.2)

with ¢(-x7 Y, 07 dl) = (-xv y)v 10(0’ dl) = (Oa 0) To CompL'Ite'

(@) ¢ moduloO(|x, y|*) + O(|c;|?), it is sufficient to knowH¢ moduloO(|x, y|A*?) +
O(l¢i|®);

(b) p moduloO(|c;|?), it is sufficient to knowH ¢ moduloO(|¢;|®) + O(|x, y|®).

For systemH* of proposition 6, modul®(|c;, A|%) terms, and writings. instead ofc
again, the reparametrizatiop reads

uy = (—3c3 +O(c?) + Ady — Lerdi — cady + O(c?))
+1%(dhz — §d3 — 3dida + O(c)) + 0%

Uy = (%cz - gczcl + O(c,»s)) + A(—%dz +ds3 + %ngl —csdy + écldz — %Cldg
+gczd4 — cads + O(c?)) + Az(—%dla +dis+ §d2d4 + %d3d4 — dads
+3d1ds — dids + O(c;)) + O(L3).

The coordinate transformatiog, moduloO(|x, y|3) 4+ O(|¢;, A|?) terms, reads

x> §ea — 3doh + (1+ Je1 + 3dal)x + (Ges3 — 3deM)x® + (cs + dgh)y?

y > (L= 2dah + 3dsh + 1)y + (Gea — 3es — Ees + 3doh — 3dgh — LdeM)xy.

Remark 7 (relevant degree for H™). To computeo up to second order, it suffices to know
H¢ modulo Q|c;, |3 + O(|x, y|®) terms. In turn, for this,H* modulo Q(|x, y|”) terms
suffices, as\ is a quadratic polynomial on the phase spacedéf To computeg up to
terms given in proposition 7, it suffices to kna# modulo Q(|x, y|®) + O(|¢;, A|?) terms,
and againd” modulo Q(x, y|’) terms suffices.

Remark 8 (singular circle). In appendix D, the singular circle off* is defined as the
circular level set that touches the two saddle points arisingifo& 0 (see figure 2). By
a topological argument, its pullback ky must coincide with the singular circle df¢,
defined as the set of singular points of (3.2). Up to the order,ip, ¢; and A that we
computedp and p in, we verified that they indeed do.

Proof of proposition 7. The first part is proved by inspecting the algorithm described in
section 8, and algorithm 18 (section 9.2). The fact tHétis required up to ordeA + 2
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in order to computep only up to degreeA is due to the first derivatives of the central
singularity being of second degree. Similarly, in order todixit is sufficient to compute
H¢ up to degree two irfx, y) as the deformation directions associate¢htcand o, are of
degree two or less (namelyand y? respectively).

A little computer algebra yields the second part. O

6. BCKV normal form

BCKYV theory classifies the family of systenis” as two degree-of-freedom systems. For a
given member of the family (i.e. for certain values of the coefficients) it provides a normal
form system, which is itself a two degree-of-freedom system. This should be contrasted to
the deformationH*, classifyingH" as a family ofplanar systems; see remark 2.

We now digress on the significance of planar unfoldiig for the original two degree-
of-freedom systemH”, with the perturbation problem mentioned in the introduction in
mind. EssentiallyA is a phase-space variable, hence it has to be viewed as a distinguished
parameter. TherlH* no longer is a versal unfolding, as the related morphisms fresg
an ordinary parameter. Indeed, in the distinguished-parameter setting the class of allowable
morphisms (reparametrizations) shrinks, increasing the number of (equivalence classes of)
normal forms.

It turns out to be possible to ug* to construct a suitable unfolding ? (see theorem 9
below), corresponding to a generic path (surface) in a more general parameter space. In this
setting many more parameters are needed for versality. The path arises when the coefficients
of such a versal normal form are expressed as functions of the available parameters.
Moreover, these parameters will be expressed in the original (physical) constants of the
system. This gives the natural set-up for the aforementioned perturbation problem; see [10]
for a general discussion.

First we give the necessary definitions, in the context of a general (compact) symmetry
groupT. In section 6.3 we specialize to the example system.

6.1. BCKV theory—definitions and main theorem

We first give a heuristic motivation for the form of allowable morphisms. Suppose that
HE(x,y, »,u) is a normal form of the two-degree-of-freedom systéih. Herex and y
are phase space variablesthe distinguished parameter andhe ordinary parameters. We
require a morphism inducingl” from H? to respect the phase space and parameters. This
means, as usual, that thereparametrization may not depend om@ndy, but neither omn.
Furthermore p-reparametrizations are required to be independent afid y, because. is
a constant of motion both fai” and the normal forni 2.

Second, the distinguished parameteis physically interpreted asngular momentum
By its nature, it is non-negative. It is therefore natural to requirextheparametrization to
respect the zero level. These ingredients lead to the following definition; see appendix C
for the notation.

Definition 8 (BCKV-restricted morphisms). Let two deformationsF € &,,., andG €
&, of f=F(,- 0 €&, be given, such thaf(0,1) = 0. F is said to beinduced
from G by I'-equivariant BCKV-restricted morphisnifsthere exist germs of -equivariant

mappings¥ : R — RPH @ R — R and ® @ R® — R’ such that the
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following diagram commutes:

R™7 x {0}5 — R7+T+s 1 R7+s 2 {O}r « RS - R7+s

\F

ml qfl /GR <1>l | @l <1>l

RHT % {O}t - R+t 8! R+ 2 {O}r « Rt — R+t

On R R+ andR"** the action ofl" is defined by trivially extending it ofiR”.

In formulae, this amounts to: there exigt: R'™ — R’, ¢ : R"™* — R" such
that ® = (¢, 0), ¥ = (¢, ¢, 0), ¥ (x,A,0 =x, ¢(1,0) = A, ¢(0,u) = 0, ®(0) = 0,
and F(x, A, u) = G({(x, A, u), (A, u), ®m)). The ¢, v and ® are the analogues of
¢ and p; of (5.2), but obey more restrictions. Morphisr@, ®, ®) as above are called
BCKV-restricted morphisms.

We are looking forversal deformations, i.e. deformations such that every other
deformation of the same germ can be induced from it. In [10,theorem 11], versal
deformations with respect to BCKV-restricted morphisms are characterized; we give the
I'-equivariant version here.

Theorem 9 (BCKV-restricted versal deformations).Let /' € &), be a family of germs
of I'-equivariant germs depending on a distinguished parameteiR”. Let fo € £ : x
f(x, 0) have codimension. Then:

(1) f has a universal deformation with respect fG-equivariant BCKV-restricted
morphisms ifff, considered as a deformation g¢§, is versal with respect to ordinary/-
equivariant morphisms.

(2) If F(x, A, u) is a (uni)versal deformation of with respect ta"-equivariant BCKV-
restricted morphisms, the®' (x, O, u) is a (uni)versal deformation ofy with respect to
ordinary I'-equivariant morphisms.

(3) If f(x,A) is a universal deformation ofy with respect to ordinary-equivariant
morphisms, then = ¢ and F : R"***¢ — R defined by

< a
Fe = 000+ Y e, 0
j=1 J

is a universal deformation of with respect ta"-equivariant BCKV-restricted morphisms.

A universal deformation is a versal deformation with minimal number of parameters.

Proof. The proof for the nonequivariant case can be carried over to the present setting with
obvious changes; see [10]. O

6.2. Path formulation

As the number of distinguished parameters is fixed, theorem 9 implies that when the central
singularity fo has high codimension, there are no versal deformations with respétt to
equivariant BCKV-restricted morphisms.

However, we can view the system asibfamilyof a versally deformed system. The
normal form then includes functions that describe the submanifold, embedded in the versal
system’s parameter space, that the system traces out. Bifurcations of the intersection of
this submanifold with the bifurcation set yields additional information. This description
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is usually called the path formulation, see [20, 3]. For this final reduction, we need the
following.

Definition 10. A BCKV-restricted reparametrizatiois a mapping(¢, ) with ¢ : R"* —
R", 6 : R* — R* such thatp (0, u) =0, 6(0) = 0.

Note that it is not required that (i, 0) = A.
The following lemma is a slightly stronger version of [10,lemma 7], and is used in the
proof of proposition 12 below.

Lemma 11 [10]. Letr < s, letz : R* — R” be a projection onto some-dimensional
subspace oR*, and leth : (A,u) € R"™* — R’ be a map (a ‘normal form’) such that
h(0,0) = 0 and the derivative®; (7 o h(x, u))|5—u—o and D, (7r o A (A, u))|;—u—o both have
rank r. Then, for anyh € £(r + s,s) with 2(0,0) = 0 there exists a BCKV-restricted
reparametrizationt = (¢, 6) such that

T(h(h, w)) = 7 (h(Y (A, u))).

Moreover, if Dy o h(A, u) and D, o h(A, u) both have rank (at » = u = 0), thenY can
be chosen invertible.

Proof. As D, oh(0, u) has full rank, andr o 4(0, 0) = 7 0 2(0, 0), by the inverse function
theorem there exists a functiéru) with 6(0) = 0 such thatr o 4(0, u) = 7 o h(0, 6(u)).
Now D,m o h(X, 6(u)) has full rank, and moreovet o h(0,u) = 7 o h(0, 6(u)), for
all u, so, applying the inverse function theorem again, we find a function «) with
#(0,u) = 0, such thatr o h(A, u) = 7 o h(¢p(r, u), O(u)).
The last remark follows by applying the lemma with the roles @ind/ interchanged.
U

Proposition 12. Let g(x, A, u) : R"™™ — R be a generid -invariant germ, and assume
that f (x, o1, ..., oy) is a universal deformation @f(x, 0, 0) using unrestricted -equivariant
morphisms. Then there exists a BCKV-restricted reparametrizatiosuch that for the
normal form

F('x5)“7u) = f(-x5)"l+u1? '-'a)"r +Mr’6r+1()"au)’ "'75'5()\"“))7

whereg;, i = r +1,...,s, are some functions, we have thatcan be induced from
Fo(m,, T) using BCKV-restricted-equivariant morphisms. Here, denotes the projection
T (X, A, u) — X.

Proof. Let h(A, u) be a reparametrization, amel(x, A, #) a coordinate transformation, such
that £ (®(x, A, u), h(h, u)) = g(x, A, u). Defineh;(A,u) = A +u; if 1 <i <r and
hivu) =u; if r+1<i <s, and setr(oy, ...,0,) = (01,...,0,). The lemma now
applies. By genericity we may assume that the relevant derivatives haver ratk we
find an invertible BCKV-restricted reparametrizatiah such thath; (A, u) = hi (Y (A, u))
fori =1,...,r, which means that for

F(x, hou) = fx, A+ ut, ..o he +t, hy1 0 Y200 u), ., by 0o Y, w)),

we haveg(x,A,u) = F o (m;, ) o (®, m,, m,), wherem, : (x,A,u) — X andm, :
(x, A, u) — u, proving the proposition. O
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6.3. BCKV normal form ofZ¢

The constructive proofs of proposition 12 and lemma 11 provide an algorithm for computing
the BCKV normal form. Using the reparametrizations of proposition 7, we choos® for
the following:

T()\'v Ci) == (I/lz()\., Ci) - MZ()M 0)5 Cc1, u2(0a Ci)7 635 Cq, .. -)a
which is invertible, and thed, := u; o Y~1. The result is as follows.

Theorem 13 (BCKV normal form). The systenH ¢ of proposition 6 is equivalent, modulo
BCKV-restricted morphisms and reparametrizations, and modulo terms of e, 1),
to

HE(x,y, 0, ¢) = x(x2 4+ y) + y2(A +¢2) + x

-2 di  2cod
x<—‘§2+0<c?>+<dl—ﬁ— C22+O(c,-2))ﬂ/\

3 3
d dids
dio— -2 — =% 2)2
+ ( 12 3 3 ) ’3
did 2didads  didsd did
+ ( 1313 — didia — l92 - l33 " o dadsds — 1T6 +dids + O(ci))
x 32 + O(/\S))

Whereﬂ = 9(—3d, + 9d3 + ¢1(2dy — 6d3) + c2(5ds — 9ds) + c3dy — 9C5d1)_l + O(Clz)
The coefficient of expressed in the; reads

1
Gy = —o-(1— 2a1)% + O((1 — 2a3)?)

+x< _22‘(’5 + &(2@‘ 14442 + 542 — 6az(as — 16as) + 2asas
—16a2 + a5(—30a3 4 as + 26as) + 3azae) (1 — 2a1) + O((1 — 2a1)2))
+0(1%)

wherea = \755 ands$ = 243 + 6az — ag — 2as.

Remark 9 (nondegeneracy conditions)The BCKV normal form is only well defined i8
is, i.e. if do — 3d3 # 0. This translates inta, # 0 anda§ # (1+ 2a1)(3az + a4 — as). For
the spring-pendulum the first condition is trivial, the second one is not.

7. The planar system

In this section we regard the system gdanar system depending on the detuning parameter
1 — 2a; and distinguished parameter This gives an integrable approximation to the
dynamics of the iso-energetic, or equivalentigo-r, Poincaé map.

In section 5 we found the planar versal normal form

H"(x,y,u1, uz) = x(x* + y?) + urx + upy?

T See [10, section 4.2].
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with saddle-centre and Hamiltonian pitchfork bifurcations occurring along the cugves)
andu; + 3u§ = 0 respectively; see figure 2. Plugging in the reparametrizations found in
section 5 yields implicit equations for these bifurcation curves in(thel — 2a;)-plane.

For practical reasons we choose to solve)an terms of 1— 2a;. The result is as follows.

Proposition 14. In the reduced syster ¢ of proposition 6, saddle-centre and Hamiltonian
pitchfork bifurcations respectively occur along the following curves in parameter space:

_a- 2a1)*(4(5 + 8ay)a3 + (4a3 — 1)(24az + 5as — 8as))
34561 + 2a;)a? (7.1)

uy =0: A=

+0((1 - 2a1)3)

1 — 2a;)? 2_ 1— 2a;)3
ui+32=0: - ( 1) (a5 — aq)( 1)
6442 1284

Remark 10 (phantom bifurcation). The parameterir is non-negative, and close to
resonancedy ~ %) the solution (7.1) is negative. In the systeR?, therefore, the
corresponding bifurcation does not occur. This conclusion also follows from the observation
that at the bifurcation (7.1) the singular circle disappears (see appendix D), whéfeas
exhibits this singularity for all parameter values (see remark 1).

+ O((1 — 2a1)H. (7.2)

The second solution does define a bifurcation, however. We continue with a description of
it.

7.1. Bifurcations and dynamical implications

First we discuss the bifurcation of the reduced systéfrin the plane. If we let; deviate
sufficiently far from the resonant valL% the corresponding points in the, uz)-plane in
figure 2 will trace out a line that crosses the parabola twices;ds always negative.

Assume the parabola is crossed from below. Then at first the system has one maximum
inside the singular circle, and a saddle point outside it. After the first Hamiltonian pitchfork
bifurcation, two saddle points have formed on the singular circle, together with a minimum
inside, with no critical points outside. The two saddle points have a heteroclinic connection
because of th&,-symmetry.

The second bifurcation destroys the maximum, leaving only a minimum inside the circle,
and again a saddle outside of it.

7.1.1. Topological remarks. A priorthe spring-pendulum lives on the fixed-energy
submanifold inR*, in our caseS®. This sphere is equivalent tB? x S!, modulo an
identification ondD? x S*.

The normalized Hamiltonial” on S* has a nondegeneraf#-symmetry, except on
oneSt-orbit where points have stabiliz®,; see proposition 3. A model for this topology
is the mapD? x St — S2 given by

(x,y,¢) > (V1—r2cosp,v1—r2sing, x cos2p — ysin2p, x Sin2p + y cos 2).

(Herer? = x4 y? andD*! = {r? < 1}.) This map is surjective, and injective on the interior
of its domain. Fixing thes*-symmetry, it provides a correspondence betw&esymmetric
functions onS® and functions o? that are constant odID?, that is, functions oi$2. This
justifies viewing the bifurcations described aboveS3nand the remark in section 1.3 that
S® divided out by arS!-action givesS?. In this picture, the singular circle collapses to a
single point onS?, and is referred to as theole
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Figure 5. Intersections of the reduced phase space with level sefd"ofhere depicted as
planes) through the singular point, for several values of the paramgter

More precise information can be obtained by exploiting the algebraic structure. The
normalized Hamiltonian can be written 88 = f (&1, &, &3, £4) Whereé; = 7171, &2 = 7222,
£3 = 7172 + 7125 and &, = (2175 — Z122)/i are the basic (real) invariant polynomials. These
basic invariants are ndteg but satisfy the relatiol;£2 = (£2 + £2)/4. Moreover, reality
conditions imply¢; > 0 andé; > 0. The quadratic paif; is an integral ofF”, and without
loss of generality we may reduce #, = 2¢; + & = €, wheree is some small positive
number. Then, the relation between the invariants defines a two-dimensional manifold, the
reduced phase spacim R?, namely(e — 2£1)%;, = (62 +&2). Topologically it is a sphere,
but has a cone-like singularity & = 0; see figure 5). This singularity has dynamical
significance: it is always a fixed point.

We now interpret the bifurcations on this (topological) sphere. Level$"ore surfaces
in R3 > (&, &, &) and intersect the reduced phase space in a curve; again, see figure 5.
As in the previous section, suppose we traverse#heu,)-plane on the left of the,-axis
crossing the parabola of Hamiltonian pitchfork bifurcations twice. First, the Hamiltonian has
one maximum somewhere &%, and a minimum at the pole. The heteroclinic connection
appearing in the planar normal form after the first bifurcation corresponds to a level curve
passing through the pole. In this situation, the pole is no longer a minimum. At the second
bifurcation the heteroclinic connection disappears, implying that the pole is an extremum
again, now a maximum.

7.1.2. Dynamics of the spring-pendulunAt the pole, L; is a maximum, corresponding

to the pendulum moving vertically without swinging,(= 0, see figure 4). This periodic
trajectory corresponds to the one with nontrivial stabilizor under the gibalction, in
other words, its period is half that of other periodic trajectories. Outside the parabola in
figure 2 this motion is stable, corresponding to a minimum or a maximu#iofbut close

to resonance it is unstable.

In the latter situation, the spring-pendulum exhibits two stable periodic trajectories. The
lower mass traces outiashaped and-shaped path, respectively. Far away from resonance,
one of these turned into the now-stable vertical motion, while the other turned into a purely
swinging motion §; = constant in normalized coordinates). In ordinary coordinates this
motion is special in thain; oscillates with the same frequency as, instead of roughly
twice that in the general situation.

7.2. Comparison with numerical simulations

To check the results above, we integratdd numerically, and plotted the iso-energetic
Poincaé sectiong, = 0 for varying values of the energy and detuning parametefThe
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Table 2. Comparison of bifurcation values, found numerically and analytically.

H ax a as Ameasured  Apredicted

0.01 0.5385 0.07 0.001 0.020 0.018
0.01 0.463 0.07 0.001 0.020 0.018
0.001 0.51255 0.07 0.001 0.00200 0.00198
0.001 0.4876 0.07 0.001 0.00200 0.00199
0.001 0.5365 0.2 0.001 0.00200 0.00201
0.001 0.465 0.2 0.001 0.00200 0.00198

resulting pictures, shown in figure 1, are similar to those found by computation and are
shown in figure 3. The differences (chaotic regions, subharmonics) are caused by the
flat perturbation between the normalizétP and H”, destroying integrability in#°; see
section 1.4.

To check (7.2), we located some bifurcation points, by varying the detuning parameter
a; for fixed H, a, andas. Othera; were set to zero. The results are given in table 2. For
these values of the energy,= 2H to good approximation. The final column gives the
bifurcation value ofs given by (7.2) in each situation. The agreement with the measured
value of A is very good, especially for smalf, as expected.

8. Computing universal deformation morphisms

This section is devoted to describing an algorithm that computes morphisms inducing a
given deformation from some universal deformation. First we duscuss the case without
symmetry. This algorithm was first described in [22], where it was taken for granted that
the infinitesimal stability equation could effectively be solved. In section 9 we solve this
equation using Gibner basis techniques. At the end we discuss the modifications to the
algorithm that incorporate the effects of a symmetry group. We note th@tn@r bases
appear more often in the context of dynamical systems, commonly in relation to finding
fundamental invariant polynomials; see e.g. [11, 17, 18].

Suppose that a deformatidf(x, 1;) of some germyf (x) € &, is given, that is,F (x, 0),
x € R". Suppose further that a versal deformationf@k) has been found. In practice this
means that some polynomials exist such that

<%> + spa{P;} = &, (8.1)
8x,- &,

(but see appendix C for a general definition) and t6€R, 1) .= f(x) +Z_,~ u; P; is a versal
deformation. With this explicit form in hand, it is possible to investigate the bifurcation set.
This gives a catalogue of all bifurcations that may occur in the original deformation

This does not, however, give information abaeuttich bifurcations actually do occur in
F, and for which parameter values, nor about lttwation of critical points in phase space.
For this kind of information we need the morphism induciAgfrom G. This section
describes an algorithm that computes this morphism.

8.1. An algorithm computing deformation morphisms

The algorithm presented here was taken from [22]. It is an iterative algorithm, computing
the solution degree by degree in tharameters It constitutes a constructive proof of the
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existence of a formal solution, and an explicit algorithm for finding such a solution up to
any desired degree.

The assumption that = f(x) + Y u; P;(x) is a versal deformation implies that (8.1)
holds. It is equivalent to the statement that for any germe &,, we can find germs
a;(x) € &, and real numberg; that solve theanfinitesimal stability equatiorisee [19]):

o)
Zm(x)a—f; + ZﬁiP,-(x) = g(x). (8.2)

In the case of our model = x(x? + y?) + u1x + upy?, this becomes (5.1). The result of
this section is the following.

Proposition 15 (computing versal deformation morphisms).Let F(x, u;), x € R" and
j =1,...,k be a deformation off (x) = F(x,0), and letG(x,u;), j = 1,...,d be a
versal deformation off (x). Assume that we have an algorithm that, for givenP; and
g solves the infinitesimal stability equation (8.2) mod@oc?) terms. Then the algorithm
presented below computes, for amy a diffeomorphisng (x, ;) and a reparametrization
p(u;) such thatp (x, 0) = x, p(0) = 0 and

F(x, ) = G(@(x, i), p()) + O(x?) + O(u™). (8.3)
The morphism¢, p) is said to induceF from G.

An algorithm to solve the inifinitesimal stability equation is presented in section 9.

We make the inessential assumption that the versal deformatias of the form
Gx,uj) = f(x)+ Z}l:l w;Pi(x). The algorithm can be easily adapted to cope with
more general deformations, but allowing these does not yield stronger results, and does
clutter the notation.

So we are to find a deformation morphism inducifigrom G. The line of attack is to
expandg and p as formal power series in thearametersy;, and to solve (8.3) iteratively
for increasing order in.. We define

G, )= ¢l w),  p(w) =) pi(w)

i>0 i=0

whereg¢; and p; are homogeneous of degrea the parameterg, and denote the solutions
up to and including ordep in u by superscripting the mappings by

p P
¢POr, )=y i, ), PP =) pilw).
i=0 i=0

Now assume (8.3) has been solved uputorder p, that is,

F(x, ) = G@"(x, ;). p” (1)) + O(u? ™) + Ox).
(For p = 0 this is true if we set°(x, u) := x and p®(n) := 0.) To solve (8.3) up to order
p + 1 we add(p + 1)st-order terms inu:
G(@"™, pP™h) = G(9” + Gpi1. p” + ppr1) = G, pP) + DG (@7, pP) - ppi1
+D,G(@", p”) - ppr1 + Odpr1l® + 10p+1l?)
=G(@", p") + Duf(xX) - $ps1+ DG (x, Wlu=0 - pp1 + Ou"™?).

To obtain the last equality we used the estimapééx, u) = x + O(n), dpr1(x, n) =
O(uP™), pP(pn) = O(n) and G(x, n) = f(x) + O(u). Using this we write (8.3) up to
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wn-order p 4+ 1 in the following way, expanding inner products of vectors in terms of their
component functions, and using th@tx, u) = f(x) + Y, ux P(x):

Fx 1) = G@" 0, 1), p7 (1)) = Y == () - B e, 1)
=1 9%k
d
+ ) Pex) - ppyri(iy) + Ol|7 ). (8.4)
k=1

The left-hand side of (8.4) does not contain terms of order less phanl in w, as we
assumed thap?, p? solved (8.3) up to ordep. We can solve (8.4) by equating coefficients
of uo = ul*--- uy' left and right, wherer; +- - - +0, = p+1. For each ternu” we obtain
an equation of the form (8.2), and by the universality condition each of those equations can
be solved. This proves existence of a formal solution to (8.3).

Section 9 presents an algorithm to compute a solution to (8.2), up to any desired degree
in x.

8.2. Universal deformations with symmetry

In the presence of a symmetry grolipthe versal deformation condition (8.1) changes into
TV () +R{P}=E). (8.5)

Here TT (f) is the I'-equivariant tangent space 6 It is the ideal generated biv; f},
where thev; are the generators of ti& -module ofI"-equivariant vector fields oR” (see
appendix A).
WhenT' = Z, with action (x,y) — (x, —y), the generator; are v; = % and
vy = yga—y. The discussion above can be copied almost verbatim, and in the end we have to

solve several instances of an equation of the form

N d
D @)@ fHx) + D BiPi(x) = g(x). (8.6)
k=1 k=1

Here N is the number of generatorg. The functionsv; f, P; and g are all"-invariant,
and we are to find -invarianta;’s and 8;'s that solve (8.6)

9. Solving the infinitesimal stability equation using singularity Grobner bases

In section 8 we reduced the algorithmic problem of finding deformation morphisms to
solving the infinitesimal stability equation (8.2) several times over. Solving this equation
is similar to ordinary division. We present an efficient algorithm that uses ideas from
Grobner basis theory. Similar algorithms have been proposed in, e.g. [12, 27]. First the
case without symmetry is discussed. In section 9.5 symmetry is incorporated.

To start, we reformulate our problem in a slightly more general way. The infinitesimal
stability equation can be cast in the form

k m
dYoaifi+ ) Bri=g (9.1)
i=1 i=1
where we want to findy; € &, and 8; € R in terms of a giveng € &,. The
fi, ..o, fror1, ..., € &, are considered fixed, and we suppose that

(fi)é',, +sparﬂ{{rlv--‘7rm} :Em (92)
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implying existence of a solution. We suppose, for clarity of exposition, that the number
of complementing functions; is minimal.

In practice we are interested in the solution up to some given degree; say in (9.1)
we want to knowy; and 8; modulo degreel terms. Then the question reduces to linear
algebra: ifV denotes the finite-dimensional vector space of truncated power series, the map
(i, Bi) = Y a;fi + > Bir; is a linear map fromV & --- & V & R" — V, surjective
by assumption. Although it is possible to find a solution by straightforward Gaussian
elimination, this is laborious. We therefore seek a more efficient algorithm.

Below we give an algorithm that effects the splitting

g=Y aifi+r+0x". (9.3)

The first term lies in the ideal = (f;). The algorithm takeg and a set of generators of
I as input, and produces truncated power sexieandr. The outputr of the algorithm
depends on the particular set of generators used, and on their ordering. Specifidakg,
not a priori lie in an m-dimensional vector space, but generally in a larger one.

By adding certain functions to our initial set of generatfys, ..., fi}, but in such
a way that the ideal they generate remains the same, the outpam be forced to lie
in an m-dimensional vector space. Moreover, it becomes uniquely determined, in a sense
explained below. A set of generators that make our algorithm behave in this nice way is
called asingularity Grobner basis The name is taken from [12].

Finally, a small computation brings the output in the desired form (9.1).

Remark 11 (fixing the zero level).In our application,g of (9.1) vanishes at the origin,

as we deal withpotential deformations. This generally renders one of the deformation
directionsr; redundant. Apart from this detail, the discussion remains applicable to our
situation without change.

9.1. Definitions

In order to write down the division algorithm we need the following concepts. They are
adapted from [13].

9.1.1. Monomial ordering.

Definition 16. A monomial orderingon Z,, or equivalently on monomials®, is an
ordering < such that:

(i) < is a linear ordering, i.e. for every, 8 exactly one ofx = 8, « < B8, 8 < « holds.

(i) If « <Bthena+y <B+y.

(i) < is a well-ordering, i.e. every nonempty subsetZf, has a smallest element
under<.

In our computations we use the following ordering: < x# if either the total degree of*
is smaller than the total degree of, or the total degrees are equal arfdprecedes:’ in
lexicographic ordering. For example?y < xy? asxxy occurs beforeryy in a dictionary.
More precisely, the relation < 8 holds if:

o |af < [B], or

e |a| = |B], and for somej we havew; = g; fori =1,..., j —1 anda; > B;.
Herela| = a1+ - + ;.
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9.1.2. Lowest term of a power seriesThe following concepts are the ‘opposite’ of the LT,

LM and LC used with ordinary Gbner bases [13]. In that context they standléading

term, leading monomialandleading coefficientespectively, and they refer to the greatest
monomial occurring in a polynomial. In the context of truncated power series, the concept
of greatestmonomial is not well defined. However, tlsnallestmonomial is, and turns

out to be useful.

Definition 17.

(i) MM(f) is the minimal monomial occurring irf, with respect to the monomial
ordering.

(i) MC(¥) is the coefficient associated to the mononhitM( ).

(i) MT(f) is the term associated tdM(f), that is,MT(f) = MC(f) - MM(f).

(iv) multideg f) is the exponent of the monomMM(f), an element oZZ,

(v) A monomialx® is said to divide a monomiat?, denoted bw®|x?, if B — « is a
vector with non-negative entries, and thefyx® := x#~.

9.2. The division algorithm

Let a degree bound be given. The following algorithm is a first step towards solving (9.1)
modulo terms of degre& or higher ing.

Algorithm 18 (division of g through {f;}).
Input: integerd, power serieg, fi, ..., fr truncated at degre.
Output: power series, g1, . .., g truncated at degreg, such that

k
g= Zq,—f,- +r modulo terms of degree and higher (9.4)
i=1

r € spag{x® : MM(f;) f x®Vi}. (9.5)
Algorithm:

h<g
Reduce. modulo terms of degreé or higher
r<20
gi <0 (i=1,...,k
While i # 0 do the following.
If MM(f;)IMM(h) for somei, then

gi < qi + MT(h)/MT(f)

h < h — (MT(h)/MT(f)) fi

Reducei modulo terms of degreé or higher

Else
r < r+ MT(h)
h < h—MT(h)
Endif
Endwhile.

(The symbol<« is the assignment operator and should be read as ‘becomes’.)

Proof. Termination is guaranteed because each pass through the While-loop removes the
minimal term fromi and does not introduce smaller terms. As there are only finitely many
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monomials of degree less thah this implies termination. The body of the While-loop
maintains the following invariant:

h+) qifi+r=g modulo terms of degreé and higher
implying (9.4) when the algorithm is finished. O

The reductions modulo degreeterms are necessary if the monomial ordering is not
compatible with the degree, for in that cagd/(%) might be of degre@ or higher even if
there are still terms of lower degree presentjrand the algorithm might not terminate.

We knowa priori that the output lies in the vector space (9.5). The following example
shows that this not necessarily determinasiquely.

9.2.1. Example. Taking f1 = x2 + y?, f>» = xy and the monomial ordering we described
before, then the inpu¢ = y® gives outputy; = ¢» = 0, r = y3. On the other hand, we
have

Y =yfi—xf2
showing thaty; = y, ¢ = x andr = 0 also satisfy the output criteria. It follows that for
thesef; the output criteria do not determimeuniquely.
A very similar problem is encountered when trying to solve the polynomial ideal
membership problem. This problem is solved usindglitier bases. Our problem can
be solved in much the same way, using a modification @oBer basis ideas; see [12, 27].

9.3. Singularity Gobner bases

We define a singularity Gbner basis (SGB), to be a set of generators for a given ideal that
makes the division algorithm above behave nicely.

Definition 19. G = {f1, ..., fx} is an SGB for an ideal if I = (G), and the output of
algorithm 18 is uniquely determined by (9.4) and (9.5), forgall

For example{x? + y?, xy} is not an SGB, as we saw above. The s&t+ y?, xy, y3} is,
but we cannot prove this yet; see appendix E.
We now give an intrinsic characterization of SGBs. To do so we need one definition.

Definition 20. Let I € &, be an idealMM(I) := ((MM(f) : f € I}).

Proposition 21 (intrinsic characterization of SGBS).G = {g1, ..., g} is an SGB for the
ideal I = (G) iff (MM(g1), ..., MM(gy)) = MM(I).

We check the example aboveG is not an SGB, and indeedy® e (G) because
y® = y(x?+y?) —x(xy), 50y% € MM((G)), buty® & (MM(x? + y?), MM(xy)) = (x?, xy).

Proof of proposition 21.

(1) Assume thaG is an SGB. Leg € (G), and apply the division algorithm tpand the
generatorg;. Because the outputis uniquely determined, it must be zero. This implies that
the algorithm never executed the Else part of the If statement. In particular, in the first pass
this means tha1T(g;)|MT(g) for somei, in other worddMM(g) € (MM(g1), ..., MM(g)),
or, asg is a general element ofG), MM((G)) C (MM(g1), ..., MM(g:)). The reverse
inclusion is immediate. This proves the first part.

(2) Assuming thatMM((G)) = (MM(gy1), ..., MM(g)), we want to show that is
uniquely determined by (9.4) and (9.5). Suppose it is not, and write > o, g; +r =
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Yoajgi+r,or ) (o —a)g =r —r wherer —r' # 0. We haver’ —r € (G),
implying that MM(" — r) € MM((G)), and invoking the assumption we find that
MM@" — r) € (MM(g1), ..., MM(gy)). This in turn implies thatMM(g;,)IMMG" — r)
for somei, contradicting (9.5), se = r'. O

Every ideal has an SGB. In appendix E we give a constructive proof of this fact:
an algorithm that adds elements to a given set of gener&ioss {g1, ..., g«} SO that it
becomes an SGB. Each of these new eIemg;nme elements of the idead;), and in fact
the algorithm can be adapted to supply that explicitly express the new elements in the
old ones:g; = 3, vi;8- With thesey;; the output of the division algorithm,

§=Yes+ Yesj
i J
can be rewritten in the form

g= Z <Ol,' + Z yijaj/-)g,- +r. (9.6)

i

9.4. Solution of (9.1)

Our last task is to rewrite (9.6) in the form (9.1), that is, using the givernstead of a
remainderr of the form (9.5).

Remark 12. If we may choose the form of the versal deformation ourselves, we can control
the r; that occur in (9.1). If we choosg; = x*, where the set of* forms the monomial
basis of the vector space in (9.5), we get= x% and the output of the algorithm is
automatically in the desired form.

Assume we have an SGRq, ..., g} for the ideal(f1, ..., fi), and lety;; € &, be
such thatg;, = Zj vij fj- As noted above, thesg; can be computed while computing the
SGB; see appendix E.

Denote the vector space (9.5) By, and its monomial basis bix* : o € A}. Divide
all r; through the SGB, and use thg to get expressions

ri = Zc,-jfj + Zdiax“.
J aeA

Because(f;) ¢, + spa{ri, ..., .} = &, we know that the canonical projections of the
spanG+, that is, the matrixd;, has rank #A. So, with some linear algebra we can find
matricesc,; andd,,; such that

x4 = ZC;JJCJ + Zd(;jrj
j J
Now divide theg through the SGB. Using thg; we get

g=) aifi+) Bux*=) (ai + Zﬂac;i)fi +y (Zﬁad;j)rj
i o o Jj o

i

which is in the form (9.1) as desired.
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9.5. The infinitesimal stability equation with symmetry

We now discuss how to modify the algorithm to make it applicable to the symmetric case.
We assume that we are dealing with a compact symmetry group. This implies the existence
of a finite Hilbert basis of invariants, and a normalized Haar-measure dsing this
measure the operator : £, — &' is defined as follows:

A(f) :=frfo ydy.

(Here f o v is the composition off with the linear action ofy onR".) The operato is
called the Reynolds, averagingoperator; see [13]. It is the identity operator &h C &,.
For finite groups the integral reduces to a finite sum.

To state the symmetric division algorithm, some extra notation is useful.fLet!,
i = 1,...,k be the given divisors. Algorithm 37 extends this set to an SGR: &,
i =1,...,m. Note that thef; need no longer be symmetric. The algorithm also yiglgls
that express theg; with i > k in the original f;.

Let R denote theéR-vector space, defined in (9.5), of possibleutputs of algorithm 18.
Finally, let R" denote theR-vector space of averaged resi§r), wherer is the rest
by division through 11, ..., f,, by algorithm 18 of the elements od(R). In general
RT C A(R).

Algorithm 22 (symmetric division of g € EL through {f,, ..., fi} C EL.).
Input: integerd, power serieg, f; truncated at degreg.
Output: power series, g1, ..., qx € E" truncated at degreg, such that

g= Zq,»f,» +r modulo terms of degreé and higher (9.7)
i=1
reR". (9.8)
Moreover,r only depends on the restclassg@fmodulo(fy, ..., fi)er, and ifg € R then
r=4g.
Algorithm:

Compute Gobner basigfi, ..., fu} of (f1,..., fi)er, with y;;, using algorithm 37.
Regardg as element of,, and apply algorithm 18 yielding andgqs, ..., g,

qi < qi + 21 4iVii fi (i=1...,k
gi < A(q:) (i=1...,k
r < A(r).

Proof. After the second step, we haves R andg = " q; f; +r. AS fi = iy i fis
after the third step we havg = Zf;l qi f; + r. Taking the average on the left-hand side
has no effect ag € £''. We haveA(h; f;) = A(h;) f; becausef; € £}, i =1,...,k. This
implies ¢ = Y'_, A(h) f; + A(r), proving (9.7).

The outputr of algorithm 18 only depends on the restclasg ofhodulo(fi, ..., fu)e,
becausd f1, ..., f.} is a GBbner basis. This restclass is uniquely defined by the restclass
of g modulo(f1, ..., fi)er, proving the first remark.

For anyr € R', let go be an input yielding: as rest. As- and go are in the same
restclass, applying the algorithm o= r yields r again, by the first remark. This proves
the second remark.
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As R is the vector space of rest classes modufds,, A(R) contains all rest classes
modulo (f1, ..., fi)er. By the first remark again, the s&t is exactly the set of possible
r-outputs of the algorithm. This proves (9.8) and the algorithm. |

9.5.1. Example. This example shows that" S A(R) in general. The dimension i
is important, as it determines the codimension of the singularity. In practice, the spanning
vectors ofR" can be obtained by applying the symmetric division algorithm to the averaged
basis elements oR (whenever these are nonzero), with some linear algebra to identify
dependent elements.

Let ' = Z, with action (x,y) — (y,x), and letf; = x +y and fo, = xy.
A Grobner basis for this ideal ovef,, with a degree-lexicographic ordering and <
y, is {f1, fo, %}, and the space of rests is spanned {dyy}. We find A(R) =
spa{A(1), A(y)} = span{l, %(x + y)}. The element%(x + y) lies in the ideal, and
applying the symmetric division algorithm we finR" = span {1}, properly included in
A(R).

9.5.2. Symmetric division id : 2 and 2 : 2 resonance cases.The symmetry groups
considered in this paper afe= Z, andT" = Z, x Z,, with actions(x, y) — (x, +y) and
(x,y) = (£x, +y), related to the 1: 2 and 2 : 2 resonance case respectively.

As it turns out, these cases are particularly easy. Both tlibr&r basis algorithm 37
and the division algorithm 18 automatically produEenvariant outputs, and there is no
need for further averaging. Moreover, the equakty = A(R) holds.

The averaging procedure sends tewfig” with » odd (or eithew or b odd, respectively)
to zero. These terms never appear during execution of the algorithms. Averaging leaves all
other terms untouched.

10. Conclusions

In this paper we analysed Hamiltonian systems using Birkhoff normal forms and equivariant
singularity theory in the plane. Algorithms that compute both normal form and the associated
coordinate transformations are well known for the Birkhoff case [14, 23, 25]. For the
singularity case the algorithm of Kas and Schlessinger [22] is available. We managed to
efficiently apply this using SGB techniques. These results are applicable to a large class of
resonant Hamiltonian systems near equilibrium.

By the BCKV normal form we found the right setting for the perturbation problem,
which largely predicts the dynamics and its bifurcations quantitatively in terms of the original
physical quantities. As a motivating example we applied the method to a spring-pendulum
model near 1 : 2 resonance. In this example the intermediate unfoklfnturned out to
be the (equivariant) hyperbolic umbili®().

Elsewhere we intend to compare our method with Duistermaat’'s [16], who uses a
slightly different equivalence relation between Hamiltonians, resulting in quite different
codimensions for certain unfoldings. It is therefore interesting to compare results obtained
in both ways.

Our overall aim remains to develop symbolic algorithms to compute the normalizing
transformations, in order to get quantitative information on the bifurcations and the
organization of the phase space, similar to the approach of the current paper.
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Appendix A. Germ isomorphy

We give sufficient conditions for germs to be isomorphic, with respect to morphisms
respecting a symmetry. The case without symmetry is well known, see e.g. [24], and the
present results are straightforward generalizations of this case; see also [35]. The section
ends with an application that was used in section 4.

Let I be a compact group with a faithful linear action 8. Group elementy € '
are identified with their corresponding linear action. In this paper we only consider the
groupsZ, andZ; x Z,, with action (x, y) — (x, e1y) and (x, y) — (e1x, €2y) (¢; = 1)
respectively.

Definition 23. &' := {f : R* - R : f(yx) = f(x)Vy € T'}/ ~, where~ is the germ-
equivalencef ~ g < 3B > 0, open, such thaf (x) = g(x)Vx € B.

& is the ring of -invariant germs of functions oR”.

Definition 24. V.I' denotes the’) module ofI" equivariant germs of vector fields d&f'.

In the case of” = Z,, the moduleV,| is generated oveg, by - andya%.

Definition 25. VoI := (X € VI : X(0) = 0}.

VoI is the £F-module of"-equivariant vector fields that vanish at the origin. In the case
of I' = Z, again, its generators are’, y?-> andy;’—y.

Definition 26. T (f) :=={Xf : X € V,'}, Td (f) == {Xf : X e V2T}.

These argangent spaceso f, ideals of£T. The generators of these ideals are found by
applying the generators of the modules and V%! respectively tof. The subscript 0 in
T, indicates that the isomorphism between germs must fix the origin.

Definition 27. f ~r g iff there exists a diffeomorphism : R” — R”" such that
o(yx) =¢(x)Vy e and¢p(0)=0andfo¢p = g.

If f~r gthenf andg are calledisomorphic(asT-invariant germs).

Definition 28. m] := {f € £ :the taylor polynomial off at 0 vanishes up to and including
orderk — 1}.

m'i=m] ={f e :f(0) =0}
j* is the projectione} — & /mp;.
In words, j*(f) is the Taylor-polynomial off up to, and including, ordek.

At this point we quote [24] for the case thBt= {id}. To stress this special case we
drop therT.

Proposition 29. [24, 111.4.2] Let £, g € &,, and assume that— f € my, i.e. j*1(g—f) = 0.
(@) If To(f) D my theng ~ f provided thatj*(g — f) is small enough.
(b) If m - To(f) D my theng ~ f.
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Note thatTo(f) = m - T(f), or in the notation of [24]To(f) = m - J(f) where J(f)
denotes the Jacobian ide@lf/ox1, ..., df/dx,)e,. Also, note that in this casey;, = m*.
The analogous result for germs with symmetry is as follows.

Proposition 30. Let f, ¢ € £T', and suppose that — f € m[, i.e. j*"1(g — f) = 0. LetM
denote the finite-dimensional vector spagg/(m" -m;), and setM,, := M N(m,, /m, ;) =
{h € M : h is homogeneous of degres.

(a) Suppose thaly (f) D m} theng ~r f provided that the projection of — f into
M is sufficiently small.

(b) Suppose that' - Ty (f) D m; theng ~r f.

(c) Suppose thaly (f) D m;. Suppose further that the projection gfinto M is an
element of\f,. Theng ~1 f provided thatj*(g — f) is sufficiently small.

For a proof, see appendix B.

A.1 Application

Proposition 31. x (ax? + By?) + h.o.t. is Z,-isomorphic tox (x? + y?), if « # 0and g # 0.
Here Z, hasR?-action generated byx, y) — (x, —y).

Proof. First of all we apply a linear transformation, so that we can assume that the nonzero
« and B in fact equal 1. The tangent spa@g (f) is generated byc% = 33 + xy?,
y22 = 3x2y% + y* and y% = 2xy2. Equivalently, 7] (f) = (x% xy2 y*)gr D mi. (In
fact, they are equal.)

We now apply proposition 30(c), with = 3. As f is homogeneous of degree 3 all
conditions are satisfied, and we conclude thaggatif the formg = x(ax? + gy?) + h.o.t.
wherea and g are sufficiently close to 1 but with arbitrary h.o.t. are isomorphig'to [J

Appendix B. Proof of proposition 30
We need the following version of Nakayama's lemma, quoted without proof from
[24, chapter 1].
Lemma 32 (Nakayama).Let K and L be £'-modules, then
K+m'LoL=KDL.

We also need the following lemma. It is a symmetric version of the fundamental geometric
lemma. See [24] for a proof.

Lemma 33 (symmetric geometric lemma)Let F(z, x) : R x R" — R be ar-dependent
family of I'-invariant functions, defined on a neighbourhood(afx) < [0, 1] x {0}, and
suppose there exists a vector fiside V2 of the form

& 0
X=- +;X,~(r,x)vi

(where X; are I'-invariant families of functions and;iO are generators ofV%" as a
module overe!), defined on a neighbourhoad, x) € [0, 1] x {0}, such thatXF = O.
Then there exists &-equivariant germ of a diffeomorphisi : R* — R” such that
F(0,¢(x)) = F(1,x) and¢(0) = 0.
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Proof of proposition 30. Parts (a) and (b) are based on [24, 1V.4.2]We first introduce
some notation. Let be the integer such tha¥ = M, & --- & M,;. Let = denote the
projectionz : m; — M. Leta;, € m" be homogeneous germs such that is of degree
m, and such that the sé¢tr«;,,};,, forms a basis off. The generators oVno’F are v?, in
particularTy (f) = (vP(f))er.

We writeg = f + h, whereg is the germ that is supposedly isomorphicfto We have
h € m! by hypothesis.

(a, first part) The first part consists of proving tHgt(f + k) D m} for ¢ € [0, 1]. By
hypothesis T (f) D m}, so we can find,;,, such that

Qi = Z)"Umvjo(f)
J

Next, define the linear operatdf on M by
Haopp =7 Z)\ij/nv](')(h)~
J

Using this we find

AT (f +th) D span, { > hijmvd(f + th)} = span (I + t H)tip im
j m
= Sparﬂ{{aim }im =M. (Bl)
The penultimate equality holds, fore [0, 1], if I 4+ ¢H is invertible for these values of
which is true ifrh = 7 (g — f) € M is small enough.
(B.1) can also be written as

Tg (f +th) + m"m; D> my.

and, by Nakayama, this implie&) (f + th) D m[, proving the first part.

(a, second part) A%t € m], the statemen®y (f + th) D mj implies that, for
any t € [0, 1], we can find germsX;(z, x) € 8{+n defined on some neighbourhood of
(t,x) = (1, 0), so that

Now write F (¢, x) = f(x) + th(x), and define the vector fiel@d := % +3 X,-(t,x)v?,
thenX F = 0.

By compactness of [d] we can find a finite number of such vector fields that can
be combined to one defined on the entire interval. Lemma 33 now provides the required
isomorphism betwee#'(0,-) = f andF(1,-) = f + h = g.

(b) The hypothesis" - 7 (f) D m[ implies that there exist;;,, € m'" such that

Ojm = Z)wjmvjq(f)-
J

As h € m; we also havev?(h) € m;, S0 Ajv(h) € mimp. But 7§ (f + th) =
(cim +13; )\,-jmv;’(h))g';, that is, 73 (f + th) + m'm] D m}, and by Nakayama this
implies Ty (f + th) D> m . The rest of the proof is the same as the second part of ().

(c) We assume that the® are homogeneous. (If not, note the®®’/(ml . VOT) is
finite dimensional, and write? = }°; v, + v, Wherew), are finitely many homogeneous
terms, andv? ., is an element ofn" VoI, so that(v)er + m" - VO = VOI. Now use
Nakayama to conclude that thig- generateV% over £''; then use these?j instead of
the v?.)
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Write f; for the homogeneoukth degree part off. We will prove the equivalence
fx ~r g. The same argument with = f then provesf; ~r f, completing the proof.

First we prove thafy (fi) D m}. By hypothesisi := f — fi € m"m}, so we can write
h = hihi with h; € mP. »° mapsmjr into itself, sov2(h) = h1v2(hy) +v2(h1)h; € mIm},
or v)(f) € Tg (fi) + m"'m;. So we have

mp C T3 (f) = W(N))er € Ty (fo) +m'my.

Applying Nakayama we findy (f;) D m}. This inclusion implies the existence af;,
such that

Qi = Z )\ijmvj(')(fk)
J

and, asg;, vf’ and f; are homogeneous, we may assume thatithg are too.
Now write ¢ = fi + hi + h-y, whereh, is homogeneous of degrée and /., only
contains terms of degréde+ 1 and higher. We define the operatdis and H., on M by

Heyaipy =1 Z)»ijmvfh(>)k~
J

We now prove thatH., is nilpotent. Let de@f) denote the total degree of a
homogeneous gernfi, sded f) the smallest total degree of terms 6f and set de@) =
sded0) = co. Then

sdeg H. i) > min(degijn) + sdego; (7-4))) > min(degiijn) + degw)(f)))
j j
= deqaim) =m,

SO H.; mapsM,, into M,, . 1®&M,, . 2®---®M,, so itis nilpotent, sa f}c = 0. The operator
I+t (Hy+H-y) is invertible, forr € [0, 1], if H; is small enough, i.e. f(fi—g) =7 (f—g)
is small enough. Indeed, the inverse is given by the sum

(I + t(Hg + Ho))h =) (—t(Hi + H.0)), (B.2)
j=0

and nilpotency ofH., allows us to derive the inequality(H, + H-;)|| < C||H; "],
whereC is some constant, so that for smai}, (B.2) converges. We have now

ATg (f + (i + h=) D span, { 3 hiju(f + 1y + h>k)>}
J

= Sparﬂg{(] + I(Hk + H>k)gim}im = Spa%{gim} =M (t € [Ov 1])

where we used that + ¢ (H, + H-y) is invertible. Now apply Nakayama to conclude that
Ty (f +th) D m, whereh = hy + h-,. The rest of the proof is the same as the second
part of (a). O

Appendix C. Universal deformations

Here we present a necessary and sufficient condition for deformations to be versal. The
definitions and results are straightforward generalizations of the nonsymmetric case. Our
main source is [24, ch XI]. Other good references are [19, 35]. See appendix A for some
of the notation used in this section.
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Definition 34.
(a) The ring of germs of -invariant functions orR"” x R", whereI" acts trivially on
R, is denoted byl .
(b) F € £, is called adeformationof f € &) if F(x,0) = f(x).
(c) A map¢ onR” is calledI'-equivariantif ¢(yx) = y¢(x) forall y € I
(d) Two deformationsF, G € £, of the same gerny € &, are calledisomorphic
notationF ~r G, if there exists a germ of a parameter-dependeatjuivariant majg (x, u)

with ¢ (x, 0) = x such that
Fx,u) = G(d(x,u),u).
(e) A deformationG € &, is said to benducedfrom a deformationF € &, if there
exists a germ of a reparametrizatibn RY — R” such that
G(x,v) >~r F(x, h(v)).

(Note that the isomorphism depends wmot onu = h(v).)
(f) A deformationF of f(x) = F(x, 0) is said to beversal if any deformationG of f
can be induced fron#'.

Proposition 35. Let F € £, be a deformation off = F(x,0) € . A necessary and
sufficient condition forF' to be versal is that
TV (f) +span{Fi, ..., F,} =&
Here F; ;= %quo are called theinitial speed=f the deformationF. See definition 26 for
T (f).
The codimension of the gerrfi is, by definition, the codimension @t (f) in £', and
is equal to the minimum number of parameters of a versal deformation.

C.1. Application: versal deformation af(x? + y?)

We apply proposition 35 to the cage= x(x? + y?), and symmetry grou’ = Z, acting
by (x, y) = (x, —y).

The tangent spac&” (f) is (3x” + y?, 2xy%)er = (3x% + %, 2xy%, x%, y*)er, SO that
TV(f)+spa{l, x, y2) = 5;. Therefore,F (x, ug, u1, uz) = x(x2+ y?) +uo + xu1+ y?us
is a versal deformation of.

In our application we only consider deformations that fix the zero level, so that the
parametet:y can be dispensed with; see remark 11.

Appendix D. Bifurcation analysis

The model in terms of which our system was described is the universal deformation
G(x,y,u1, uz) = x(x% + y?) + ux + upy?. This deformation has the following critical

points:
(x,y) = (:I: —%, O) and (x,y) = (—uz, +/—ui — 3u§) .

Bifurcations therefore occur along the curues= 0 andu; + 314% = 0; see figure 2.
The level sets ofG are organized by a special level set that factorizes into first- and

second-degree algebraic curves crossing in the paints) = (—up, +,/—u1 — 3u). The

curves are level sets for the lev6l= —u»(u3 + u1), and are given by the equations

X = —uy and (x — %ug)2 + y2 = —uq — %ug
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For parameter values for which the curves cross, the second equation defines a circle
that separates compact level curves from unbounded ones. (Note thatfod the second
equation has no real solutions.) This circle is referred to asitigular circle The reason
is that it is the image of singular points of the transformation (3.2) we employ in our
application.

Appendix E. Constructing an SGB

This section addresses the problem of, given a set of generators for an/ jdealv to
add elements from the ideal to this set so that it becomes an SGB. (See section 9.3 for
the definition of an SGB.) The algorithm to accomplish this closely follows the Buchberger
algorithm for ordinary Gibner bases, see [13,chapter 2]. As a corollary we obtain a
necessary and sufficient condition for a set of generators to be an SGB.
Definition 36 (S-function).
l.em.(MM(f), MM(g)) ,  l.em.(MM(f), MM(g))

MT(f) MT(g)
The S-function of f andg is the simplest combination of andg such that their minimal
monomials cancel. For exampl&(x? + y?, 2xy) = %(x2 +y?%) — %2}@ =3

S(f.8) =

Algorithm 37 (construction of an SGB with basis transformation).

Input: f1, ..., fi.

Output: An SGB(g1, g2, ...) for the ideal(f1, ..., fi), andy;; such that
aij fi i=1 ..., #G.

Algorithm:

G < (f1,---5 fo)

For every distinct paifg;, gj) € G x G, i < j, do the following.
Computer ande; resulting from dividingS(g;, g;) throughG

If r # 0 then
G <~ GU(r)
l.c.m.(MM(g;),MM(g)))
Y#G.m < W im
_ Lem (MM(g:),MM(g)))
MT(g;) ‘im
#G-1
_anl OnYnm (m:].,,k)
Endif
Endfor.

The main loop is over every ordered pair of (nonequal) elements.olWhen elements
are added taG in the body of the loop, the number of pairs to be considered increases
accordingly.

The algorithm does the bookkeeping necesssary to write the output SGB in terms of the
input f;; a short calculation verifies that the invariant

k

gi=2)/ij]?,i=l,...,#G
j=1

is maintained over the While-loop. If thg’s are not required, the statements involving
them may be removed.
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Proof.

Termination The successive set§; give rise to an ascending chain of ideals
(MM(g1), ...). By the Hilbert basis theorem, this chain stabilizes. Since, for nonzero
r, MM(r) ¢ (MM(g1), ...) by (9.5), this implies termination.

Correctness(G) = (fi, ..., fx) throughout the algorithm. In the end, we know that
everyS(gi, g), &, & € G, has remainder zero upon division through Let f € (G). We
must showMM( f) € (MM(g1), ..., MM(g,)).

We can writef = ijl h;gi, and defined = min;(multideg;g;)). Choose thé:; such
that § is maximal. If§ = multideq f) we are done, so assunie< multideq f). Define
m(i) := multidegh; g;), and split the sum as follows:

f=) MThogi+ Y (i —MTh))gi+ Y hig. (E1)

m(i)=34 m(i)=34 m(i)>8

Definec; = MC(h;g;) and p; = MT(h;)g;/c;. Without loss of generality we now assume
that MC(g;) = 1, implying thatMC(p;) = 1, and furthermore we assume that theare
ordered in such a way that multidégg;) = § fori = 1,...,¢, and multidegh;g;) > &
fori =+t +1,...,¢. The first sum appearing in (E.1) can be rewritten as

.
Y MT(hi)gi = c1(pr— p2) + (c1 + c2)(pa — pa) + -+ + (c1+ -+ + cv1)(pr—1 — pr)
i=1

+er+ -+ er)pr (E-2)

The second and third sum of (E.1) only contain terms of multidegree strictly large$than
BecauseMT(p;) = x? so that multidegp, — pi+1) > 8, and multidegf) > 8, the coefficient
of p, in the last term of (E.2) must vanish.

Definey; = l.c.m.(MM(g;), MM(g;+1)),i =1, ..., —1. MM(g;) dividesMM(h;g;) =
x%, sox?~7 is a monomial. Now

gix’  gipx’ _ &MT(h) _ giiMT(hivy) _
MT(g) MT(git1) MC(gihi)  MC(gitahit1)

xP7S (g, giv1) = Di — Di+1.
SinceMT(p;) = x?%, this implies that multideg® " S(g;, gi+1)) > 6.

Next, we use thaf(g;, g;+1) has remainder zero upon division throughi.e. they can
be written as

t
S(gi» gi+1) = Z a;j 8j
=1

where multidegs;;g;) > multideg(S(g;, gi+1)). The latter inequality follows from the

division algorithm. If we setb; = x‘s‘yfa,-j, we find that multideg;;g;) > 6.
Equation (E.2) now becomes

t t t
D MT(hi)gi=c1) bijgi+ - +cr1y br1;g;
i=1 =1 =1

where each term on the right has multidegeed. If this is substituted back into (E.1),
it follows that we have writtenf in the form > h;g; where each multideg,g;) > 3,
contradicting the choice of. |
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E.1. Condition for a set to be an SGB

Corollary 38. A setG = {g1, ..., g} is an SGB iffS(g;, g;) reduces to zero upon division
throughG, forall 1 <i < j <k.

Proof. If all S(g;, g;) reduce to zero, algorithm 37 does not add any element to the set
G, so thatG itself was an SGB to start with. To prove the converse, note that every
S(gi, &) is an element ofG), meaning that each of them can be written in the form
S(gi, &) = Y. q’ g +r, wherer = 0. As G is an SGB by assumption, the rest upon
division throughG is unique, so it must be 0. O

E.2. Examples

The central singularity in the 1 : 2 resonance casg is x(x?+ y?), and generators of the
tangent module’" (f) (with symmetry grouf™ = Zy) areg: := 3£ andg, '= yiL, that is
g1 = 3x?+ y? and g, = 2xy?. To turn{g, g»} into an SGB, we apply algorithm 37, with
the degree-lexicographic ordering with< y. S(g1, g2) = (x%y? + 2y%) — (x?y?) = 1%,
and this is not further reduced by dividing throudli, g2}, so we setgs = y*
S(g1, 83) = (x®y* + $y®) — (x?y% = £y®, which reduces to zero by division through
g3. Also, S(g2, g3) = (xy*) — (xy* = 0 right away. We conclude that
{3¢% + y%, 20y, y*)

is an SGB for the ideal generated b, g2}

For the 2 : 2 resonance case we find the central singulgrityx* 4+ ax2y? 4+ y*. (The
coefficienta here is amodulus and different values foa# give nonisomorphic germs.) We

are now in aZ, x Z, symmetric setting, and generators for the tangent mogtilgf) are
given by

a a
g1= x—f = 2x(2x3 4 axy?) and g = y—f = 2y(ax?y 4+ 2y3).
ax ay
This is not yet an SGBS(g1, g2) = $y%g1 — 2-x2g2 = %j“xzy“. This expression can
be divided through(gi, g2}, becauseMiM(g,) = x?y?|x?y*. This results in the remainder
(ai2 —1)y5. Further combinations do not lead to new SGB generators, and we conclude that

(20 (2x3 + axy?), 2y(ax2y + 2y, v}

forms an SGB forT "' (f) if a ¢ {0, £2}.

If a = 0, an SGB is given by{x*, y*}, and T"(f) has the same codimension as in
the generic case. For the exceptional values +2 the tangent spacE! (f) has infinite
codimension. An SGB in these cases{gs, g2} as S(g1, g2) = 0, and indeed the vector
space (9.5) is then infinite dimensional.
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