8 research outputs found

    Managed Aquifer Recharge as a Tool to Enhance Sustainable Groundwater Management in California

    Get PDF
    A growing population and an increased demand for water resources have resulted in a global trend of groundwater depletion. Arid and semi-arid climates are particularly susceptible, often relying on groundwater to support large population centers or irrigated agriculture in the absence of sufficient surface water resources. In an effort to increase the security of groundwater resources, managed aquifer recharge (MAR) programs have been developed and implemented globally. MAR is the approach of intentionally harvesting and infiltrating water to recharge depleted aquifer storage. California is a prime example of this growing problem, with three cities that have over a million residents and an agricultural industry that was valued at 47 billion dollars in 2015. The present-day groundwater overdraft of over 100 km3 (since 1962) indicates a clear disparity between surface water supply and water demand within the state. In the face of groundwater overdraft and the anticipated effects of climate change, many new MAR projects are being constructed or investigated throughout California, adding to those that have existed for decades. Some common MAR types utilized in California include injection wells, infiltration basins (also known as spreading basins, percolation basins, or recharge basins), and low-impact development. An emerging MAR type that is actively being investigated is the winter flooding of agricultural fields using existing irrigation infrastructure and excess surface water resources, known as agricultural MAR. California therefore provides an excellent case study to look at the historical use and performance of MAR, ongoing and emerging challenges, novel MAR applications, and the potential for expansion of MAR. Effective MAR projects are an essential tool for increasing groundwater security, both in California and on a global scale. This chapter aims to provide an overview of the most common MAR types and applications within the State of California and neighboring semi-arid regions

    Assessing the Feasibility of Managed Aquifer Recharge in California

    No full text
    With aquifers around the world stressed by over-extraction, water managers are increasingly turning to managed aquifer recharge (MAR), directly replenishing groundwater resources through injection wells, recharge basins, or other approaches. While there has been progress in understanding the geological and infrastructure-related considerations to make MAR more effective, critical evaluations of its institutional design and implementation are limited. This study assesses MAR projects, using a case study of projects proposed by groundwater sustainability agencies (GSAs) in California to comply with the state's Sustainable Groundwater Management Act of 2014; these projects will almost double the number of MAR projects in the United States. We draw on content analysis of groundwater sustainability plans that propose these projects. We first assess the types of recharge projects proposed and the stated aims of the projects, to assess when and why agencies are turning to MAR as a solution. We find that recharge basins are by far the most common approach, and that GSAs hope these basins will improve water table levels, reduce subsidence, and improve water quality. We then analyze potential barriers to project implementation and assess the projects' ability to achieve the stated goals. Primary concerns identified include a potential lack of available water, a potentially challenging legal framework, and minimal consideration of funding and cumulative land needs. To conclude, we discuss broader considerations for ensuring that MAR is an effective water management tool

    Literaturverzeichnis

    No full text
    corecore