556 research outputs found

    Altered levels of blood proteins in Alzheimer\u27s disease longitudinal study: Results from Australian Imaging Biomarkers Lifestyle Study of Ageing cohort

    Get PDF
    Introduction A blood-based biomarker panel to identify individuals with preclinical Alzheimer\u27s disease (AD) would be an inexpensive and accessible first step for routine testing. Methods We analyzed 14 biomarkers that have previously been linked to AD in the Australian Imaging Biomarkers lifestyle longitudinal study of aging cohort. Results Levels of apolipoprotein J (apoJ) were higher in AD individuals compared with healthy controls at baseline and 18 months (P =.0003) and chemokine-309 (I-309) were increased in AD patients compared to mild cognitive impaired individuals over 36 months (P =.0008). Discussion These data suggest that apoJ may have potential in the context of use (COU) of AD diagnostics, I-309 may be specifically useful in the COU of identifying individuals at greatest risk for progressing toward AD. This work takes an initial step toward identifying blood biomarkers with potential use in the diagnosis and prognosis of AD and should be validated across other prospective cohorts. © 2017 The Author

    High Resolution Spectral Domain Optical Coherence Tomography (SD-OCT) in Multiple Sclerosis: The First Follow Up Study over Two Years

    Get PDF
    “Non-invasive, faster and less expensive than MRI” and “the eye is a window to the brain” are recent slogans promoting optical coherence tomography (OCT) as a new surrogate marker in multiple sclerosis (MS). Indeed, OCT allows for the first time a non-invasive visualization of axons of the central nervous system (CNS). Reduction of retina nerve fibre layer (RNFL) thickness was suggested to correlate with disease activity and duration. However, several issues are unclear: Do a few million axons, which build up both optic nerves, really resemble billions of CNS neurons? Does global CNS damage really result in global RNFL reduction? And if so, does global RNFL reduction really exist in all MS patients, and follow a slowly but steadily ongoing pattern? How can these (hypothesized) subtle global RNFL changes be reliably measured and separated from the rather gross RNFL changes caused by optic neuritis? Before generally being accepted, this interpretation needs further critical and objective validation.We prospectively studied 37 MS patients with relapsing remitting (n = 27) and secondary progressive (n = 10) course on two occasions with a median interval of 22.4±0.5 months [range 19–27]. We used the high resolution spectral domain (SD-)OCT with the Spectralis 3.5 mm circle scan protocol with locked reference images and eye tracking mode. Patients with an attack of optic neuritis within 12 months prior to the onset of the study were excluded.Although the disease was highly active over the observation period in more than half of the included relapsing remitting MS patients (19 patients/32 relapses) and the initial RNFL pattern showed a broad range, from normal to markedly reduced thickness, no significant changes between baseline and follow-up examinations could be detected.These results show that caution is required when using OCT for monitoring disease activity and global axonal injury in MS

    Oestrogen receptor β ligand: a novel treatment to enhance endogenous functional remyelination

    Get PDF
    Demyelinating diseases, such as multiple sclerosis, are characterized by inflammatory demyelination and neurodegeneration of the central nervous system. Therapeutic strategies that induce effective neuroprotection and enhance intrinsic repair mechanisms are central goals for future therapy of multiple sclerosis. Oestrogens and oestrogen receptor ligands are promising treatments to prevent multiple sclerosis-induced neurodegeneration. In the present study we investigated the capacity of oestrogen receptor β ligand treatment to affect callosal axon demyelination and stimulate endogenous myelination in chronic experimental autoimmune encephalomyelitis using electrophysiology, electron microscopy, immunohistochemistry and tract-tracing methods. Oestrogen receptor β ligand treatment of experimental autoimmune encephalomyelitis mice prevented both histopathological and functional abnormalities of callosal axons despite the presence of inflammation. Specifically, there were fewer demyelinated, damaged axons and more myelinated axons with intact nodes of Ranvier in oestrogen receptor β ligand-treated mice. In addition, oestrogen receptor β ligand treatment caused an increase in mature oligodendrocyte numbers, a significant increase in myelin sheath thickness and axon transport. Functional analysis of callosal axon conduction showed a significant improvement in compound action potential amplitudes, latency and in axon refractoriness. These findings show a direct neuroprotective effect of oestrogen receptor β ligand treatment on oligodendrocyte differentiation, myelination and axon conduction during experimental autoimmune encephalomyelitis

    Canine distemper virus persistence in demyelinating encephalitis by swift intracellular cell-to-cell spread in astrocytes is controlled by the viral attachment protein

    Get PDF
    The mechanism of viral persistence, the driving force behind the chronic progression of inflammatory demyelination in canine distemper virus (CDV) infection, is associated with non-cytolytic viral cell-to-cell spread. Here, we studied the molecular mechanisms of viral spread of a recombinant fluorescent protein-expressing virulent CDV in primary canine astrocyte cultures. Time-lapse video microscopy documented that CDV spread was very efficient using cell processes contacting remote target cells. Strikingly, CDV transmission to remote cells could occur in less than 6 h, suggesting that a complete viral cycle with production of extracellular free particles was not essential in enabling CDV to spread in glial cells. Titration experiments and electron microscopy confirmed a very low CDV particle production despite higher titers of membrane-associated viruses. Interestingly, confocal laser microscopy and lentivirus transduction indicated expression and functionality of the viral fusion machinery, consisting of the viral fusion (F) and attachment (H) glycoproteins, at the cell surface. Importantly, using a single-cycle infectious recombinant H-knockout, H-complemented virus, we demonstrated that H, and thus potentially the viral fusion complex, was necessary to enable CDV spread. Furthermore, since we could not detect CD150/SLAM expression in brain cells, the presence of a yet non-identified glial receptor for CDV was suggested. Altogether, our findings indicate that persistence in CDV infection results from intracellular cell-to-cell transmission requiring the CDV-H protein. Viral transfer, happening selectively at the tip of astrocytic processes, may help the virus to cover long distances in the astroglial network, “outrunning” the host’s immune response in demyelinating plaques, thus continuously eliciting new lesions

    CpG-island methylation of the ER promoter in colorectal cancer: analysis of micrometastases in lymph nodes from UICC stage I and II patients

    Get PDF
    Patients with UICC stage II colorectal cancer (CRC) have a risk of approximately 20% to develop disease recurrence after tumour resection. The presence and significance of micrometastases for locoregional recurrence in these patients lacking histopathological lymph node involvement on routine stained HE sections is undefined. Oestrogen receptor (ER) promoter methylation has earlier been identified in CRC. Therefore, we evaluated the methylation status of the ER promoter in lymph nodes from 49 patients with CRC UICC stage I and II as a molecular marker of micrometastases and predictor of local recurrence. DNA from 574 paraffin-embedded lymph nodes was isolated and treated with bisulphite. For the detection of methylated ER promoter sequences, quantitative real-time methylation-specific PCR was used. Of the 49 patients tested, 15 (31%) had ER methylation-positive lymph nodes. Thirteen of those (86%) remained disease free and two (14%) developed local recurrence. In the resected lymph nodes of 34 of the 49 patients (69%), no ER promoter methylation could be detected and none of these patients experienced a local relapse. The methylation status of the ER promoter in lymph nodes of UICC stage I and II CRC patients may be a useful marker for the identification of patients at a high risk for local recurrence

    The Origins of Concentric Demyelination: Self-Organization in the Human Brain

    Get PDF
    Baló's concentric sclerosis is a rare atypical form of multiple sclerosis characterized by striking concentric demyelination patterns. We propose a robust mathematical model for Baló's sclerosis, sharing common molecular and cellular mechanisms with multiple sclerosis. A reconsideration of the analogies between Baló's sclerosis and the Liesegang periodic precipitation phenomenon led us to propose a chemotactic cellular model for this disease. Rings of demyelination appear as a result of self-organization processes, and closely mimic Baló lesions. According to our results, homogeneous and concentric demyelinations may be two different macroscopic outcomes of a single fundamental immune disorder. Furthermore, in chemotactic models, cellular aggressivity appears to play a central role in pattern formation

    RSpred, a set of Hidden Markov Models to detect and classify the RIFIN and STEVOR proteins of Plasmodium falciparum

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Many parasites use multicopy protein families to avoid their host's immune system through a strategy called antigenic variation. RIFIN and STEVOR proteins are variable surface antigens uniquely found in the malaria parasites <it>Plasmodium falciparum </it>and <it>P. reichenowi</it>. Although these two protein families are different, they have more similarity to each other than to any other proteins described to date. As a result, they have been grouped together in one Pfam domain. However, a recent study has described the sub-division of the RIFIN protein family into several functionally distinct groups. These sub-groups require phylogenetic analysis to sort out, which is not practical for large-scale projects, such as the sequencing of patient isolates and meta-genomic analysis.</p> <p>Results</p> <p>We have manually curated the <it>rif </it>and <it>stevor </it>gene repertoires of two <it>Plasmodium falciparum </it>genomes, isolates DD2 and HB3. We have identified 25% of mis-annotated and ~30 missing <it>rif </it>and <it>stevor </it>genes. Using these data sets, as well as sequences from the well curated reference genome (isolate 3D7) and field isolate data from Uniprot, we have developed a tool named RSpred. The tool, based on a set of hidden Markov models and an evaluation program, automatically identifies STEVOR and RIFIN sequences as well as the sub-groups: A-RIFIN, B-RIFIN, B1-RIFIN and B2-RIFIN. In addition to these groups, we distinguish a small subset of STEVOR proteins that we named STEVOR-like, as they either differ remarkably from typical STEVOR proteins or are too fragmented to reach a high enough score. When compared to Pfam and TIGRFAMs, RSpred proves to be a more robust and more sensitive method. We have applied RSpred to the proteomes of several <it>P. falciparum </it>strains, <it>P. reichenowi, P. vivax</it>, <it>P. knowlesi </it>and the rodent malaria species. All groups were found in the <it>P. falciparum </it>strains, and also in the <it>P. reichenowi </it>parasite, whereas none were predicted in the other species.</p> <p>Conclusions</p> <p>We have generated a tool for the sorting of RIFIN and STEVOR proteins, large antigenic variant protein groups, into homogeneous sub-families. Assigning functions to such protein families requires their subdivision into meaningful groups such as we have shown for the RIFIN protein family. RSpred removes the need for complicated and time consuming phylogenetic analysis methods. It will benefit both research groups sequencing whole genomes as well as others working with field isolates. RSpred is freely accessible via <url>http://www.ifm.liu.se/bioinfo/</url>.</p

    Deletion and Down-Regulation of HRH4 Gene in Gastric Carcinomas: A Potential Correlation with Tumor Progression

    Get PDF
    Background: Histamine is an established growth factor for gastrointestinal malignancies. The effect of histamine is largely determined locally by the histamine receptor expression pattern. Histamine receptor H4 (HRH4), the newest member of the histamine receptor family, is positively expressed on the epithelium of the gastrointestinal tract, and its function remains to be elucidated. Previously, we reported the decreased expression of HRH4 in colorectal cancers and revealed its correlation with tumor proliferation. In the current study, we aimed to investigate the abnormalities of HRH4 gene in gastric carcinomas (GCs). Methodology/Principal Findings: We analyzed H4R expression in collected GC samples by quantitative PCR, Western blot analysis, and immunostaining. Our results showed that the protein and mRNA levels of HRH4 were reduced in some GC samples, especially in advanced GC samples. Copy number decrease of HRH4 gene was observed (17.6%, 23 out of 131), which was closely correlated with the attenuated expression of H4R. In vitro studies, using gastric cancer cell lines, showed that the alteration of HRH4 expression on gastric cancer cells influences tumor growth upon exposure to histamine. Conclusions/Significance: We show for the first time that deletion of HRH4 gene is present in GC cases and is closely correlated with attenuated gene expression. Down-regulation of HRH4 in gastric carcinomas plays a role in histaminemediate
    corecore