587 research outputs found

    Obfuscated Android Application Development

    Get PDF
    International audienceObfuscation techniques help developers to hide their code when distributing an Android application. The used techniques are linked to the features provided by the programming language but also with the way the application is executed. Using obfuscation is now a common practice and specialized companies sell tools or services for automatizing the manipulation of the source code. In this paper, we present how to develop obfuscated applications and how obfuscation technique usage is evolving in the wild. First, using advanced obfuscation techniques requires some advanced knowledge about the development of Android applications. We describe how to build such applications for helping researchers to generate samples of obfuscated applications for their own research. Second, the use of obfuscation techniques is evolving for both regular applications or malicious ones. We aim at measuring the development of these usages by studying application and malware samples and the artifacts that indicate the use of obfuscation techniques

    Strontium ranelate decreases the incidence of new caudal vertebral fractures in a growing mouse model with spontaneous fractures by improving bone microarchitecture

    Get PDF
    Summary Young mice over-expressing Runx2 fail to gain bone relative to wild type mice with growth and present spontaneous fractures. It allows, for the first time in rodents, direct assessment of anti-fracture efficacy of strontium ranelate which was able to decrease caudal vertebrae fracture incidence through an improvement of trabecular and cortical architecture. Introduction The aim was to investigate whether strontium ranelate was able to decrease fracture incidence in mice over-expressing Runx2, model of severe developmental osteopenia associated with spontaneous vertebral fractures. Methods Transgenic mice and their wild type littermates were treated by oral route with strontium ranelate or vehicle for 9 weeks. Caudal fracture incidence was assessed by repeated X-rays, resistance to compressive loading by biochemical tests, and bone microarchitecture by histomorphometry. Results Transgenic mice receiving strontium ranelate had significantly fewer new fractures occurring during the 9 weeks of the study (−60%, p < 0.05). In lumbar vertebrae, strontium ranelate improves resistance to compressive loading (higher ultimate force to failure, +120%, p < 0.05) and trabecular microarchitecture (higher bone volume and trabecular number, lower trabecular separation, +60%, +50%, −39%, p < 0.05) as well as cortical thickness (+17%, p < 0.05). In tibiae, marrow cavity cross-section area and equivalent diameter were lower (−39%, −21%, p < 0.05). The strontium level in plasma and bone was in the same range as the values measured in treated postmenopausal women. Conclusions This model allows, for the first time, direct assessment of anti-fracture efficacy of strontium ranelate treatment in rodents. In these transgenic mice, strontium ranelate was able to decrease caudal vertebral fracture incidence through an improvement of trabecular and cortical architecture

    Plant RNases T2, but not Dicer-like proteins, are major players of tRNA-derived fragments biogenesis

    Get PDF
    RNA fragments deriving from tRNAs (tRFs) exist in all branches of life and the repertoire of their biological functions regularly increases. Paradoxically, their biogenesis remains unclear. The human RNase A, Angiogenin, and the yeast RNase T2, Rny1p, generate long tRFs after cleavage in the anticodon region. The production of short tRFs after cleavage in the D or T regions is still enigmatic. Here, we show that the Arabidopsis Dicer-like proteins, DCL1-4, do not play a major role in the production of tRFs. Rather, we demonstrate that the Arabidopsis RNases T2, called RNS, are key players of both long and short tRFs biogenesis. Arabidopsis RNS show specific expression profiles. In particular, RNS1 and RNS3 are mainly found in the outer tissues of senescing seeds where they are the main endoribonucleases responsible of tRNA cleavage activity for tRFs production. In plants grown under phosphate starvation conditions, the induction of RNS1 is correlated with the accumulation of specific tRFs. Beyond plants, we also provide evidence that short tRFs can be produced by the yeast Rny1p and that, in vitro, human RNase T2 is also able to generate long and short tRFs. Our data suggest an evolutionary conserved feature of these enzymes in eukaryotes

    Stabilities of nanohydrated thymine radical cations: insights from multiphoton ionization experiments and ab initio calculations

    Get PDF
    Multi-photon ionization experiments have been carried out on thymine-water clusters in the gas phase. Metastable H2O loss from T+(H2O)n was observed at n ≥ 3 only. Ab initio quantum-chemical calculations of a large range of optimized T+(H2O)n conformers have been performed up to n = 4, enabling binding energies of water to be derived. These decrease smoothly with n, consistent with the general trend of increasing metastable H2O loss in the experimental data. The lowest-energy conformers of T+(H2O)3 and T+(H2O)4 feature intermolecular bonding via charge-dipole interactions, in contrast with the purely hydrogen-bonded neutrals. We found no evidence for a closed hydration shell at n = 4, also contrasting with studies of neutral clusters

    The nuclear and organellar tRNA-derived RNA fragment population in Arabidopsis thaliana is highly dynamic

    Get PDF
    In the expanding repertoire of small noncoding RNAs (ncRNAs), tRNA-derived RNA fragments (tRFs) have been identified in all domains of life. Their existence in plants has been already proven but no detailed analysis has been performed. Here, short tRFs of 19-26 nucleotides were retrieved from Arabidopsis thaliana small RNA libraries obtained from various tissues, plants submitted to abiotic stress or fractions immunoprecipitated with ARGONAUTE 1 (AGO1). Large differences in the tRF populations of each extract were observed. Depending on the tRNA, either tRF-5D (due to a cleavage in the D region) or tRF-3T (via a cleavage in the T region) were found and hot spots of tRNA cleavages have been identified. Interestingly, up to 25% of the tRFs originate from plastid tRNAs and we provide evidence that mitochondrial tRNAs can also be a source of tRFs. Very specific tRF-5D deriving not only from nucleus-encoded but also from plastid-encoded tRNAs are strongly enriched in AGO1 immunoprecipitates. We demonstrate that the organellar tRFs are not found within chloroplasts or mitochondria but rather accumulate outside the organelles. These observations suggest that some organellar tRFs could play regulatory functions within the plant cell and may be part of a signaling pathway.Cognat, Valerie Morelle, Geoffrey Megel, Cyrille Lalande, Stephanie Molinier, Jean Vincent, Timothee Small, Ian Duchene, Anne-Marie Marechal-Drouard, Laurence eng England 2016/12/03 06:00 Nucleic Acids Res. 2017 Apr 7;45(6):3460-3472. doi: 10.1093/nar/gkw1122.PMC538970

    The influence of sea ice cover and Atlantic water advection on annual particle export north of Svalbard

    Get PDF
    The Arctic Ocean north of Svalbard has recently experienced large sea ice losses and the increasing prominence of Atlantic water (AW) advection. To investigate the impact of these ongoing changes on annual particle export, two moorings with sequential sediment traps were deployed in ice‐free and seasonally ice‐covered waters on the shelf north (NSv) and east (ESv) of Svalbard, collecting sinking particles nearly continuously from October 2017 to October 2018. Vertical export of particulate organic carbon (POC), total particulate matter (TPM), planktonic protists, chlorophyll a, and zooplankton fecal pellets were measured, and swimmers were quantified and identified. Combined with sensor data from the moorings, these time‐series measurements provided a first assessment of the factors influencing particle export in this region of the Arctic Ocean. Higher annual TPM and POC fluxes at the ice‐free NSv site were primarily driven by the advection of AW, higher grazing by large copepods, and a wind‐induced mixing event during winter. Higher diatom fluxes were observed during spring in the presence of sea ice at the ESv site. Along with sea ice cover, regional differences in AW advection and the seasonal presence of grazers played a prominent role in the biological carbon pump along the continental shelf off Svalbard

    The Social and Ethical Acceptability of NBICs for Purposes of Human Enhancement: Why Does the Debate Remain Mired in Impasse?

    Get PDF
    The emergence and development of convergent technologies for the purpose of improving human performance, including nanotechnology, biotechnology, information sciences, and cognitive science (NBICs), open up new horizons in the debates and moral arguments that must be engaged by philosophers who hope to take seriously the question of the ethical and social acceptability of these technologies. This article advances an analysis of the factors that contribute to confusion and discord on the topic, in order to help in understanding why arguments that form a part of the debate between transhumanism and humanism result in a philosophical and ethical impasse: 1. The lack of clarity that emerges from the fact that any given argument deployed (arguments based on nature and human nature, dignity, the good life) can serve as the basis for both the positive and the negative evaluation of NBICs. 2. The impossibility of providing these arguments with foundations that will enable others to deem them acceptable. 3. The difficulty of applying these same arguments to a specific situation. 4. The ineffectiveness of moral argument in a democratic society. The present effort at communication about the difficulties of the argumentation process is intended as a necessary first step towards developing an interdisciplinary response to those difficulties

    Specific Immunoassays Confirm Association of Mycobacterium avium Subsp. paratuberculosis with Type-1 but Not Type-2 Diabetes Mellitus

    Get PDF
    Mycobacterium avium subspecies paratuberculosis (MAP) is a versatile pathogen with a broad host range. Its association with type-1 diabetes mellitus (T1DM) has been recently proposed. Rapid identification of infectious agents such as MAP in diabetic patients at the level of clinics might be helpful in deciphering the role of chronic bacterial infection in the development of autoimmune diseases such as T1DM.We describe use of an ELISA method to identify live circulating MAP through the detection of a cell envelope protein, MptD by a specific M13 phage--fMptD. We also used another ELISA format to detect immune response to MptD peptide. Both the methods were tested with blood plasma obtained from T1DM, type-2 diabetes (T2DM) patients and non-diabetic controls. Our results demonstrate MptD and fMptD ELISA assays to be accurate and sensitive to detect MAP bacilli in a large fraction (47.3%) of T1DM patients as compared to non-diabetic controls (12.6%) and those with confirmed T2DM (7.7%). Comparative analysis of ELISA assays performed here with 3 other MAP antigen preparations, namely HbHA, Gsd and whole cell MAP lysates confirmed comparable sensitivity of the MptD peptide and the fMptD based ELISA assays. Moreover, we were successful in demonstrating positive bacterial culture in two of the clinical specimen derived from T1DM patients.The MptD peptide/fMptD based ELISA or similar tests could be suggested as rapid and specific field level diagnostic tests for the identification of MAP in diabetic patients and for finding the explanations towards the occurrence of type-1 or type-2 diabetes in the light of an active infectious trigger
    corecore