130 research outputs found

    Pteropods are excellent recorders of surface temperature and carbonate ion concentration

    Get PDF
    Pteropods are among the first responders to ocean acidification and warming, but have not yet been widely explored as carriers of marine paleoenvironmental signals. In order to characterize the stable isotopic composition of aragonitic pteropod shells and their variation in response to climate change parameters, such as seawater temperature, pteropod shells (Heliconoides inflatus) were collected along a latitudinal transect in the Atlantic Ocean (31° N to 38° S). Comparison of shell oxygen isotopic composition to depth changes in the calculated aragonite equilibrium oxygen isotope values implies shallow calcification depths for H. inflatus (75 m). This species is therefore a good potential proxy carrier for past variations in surface ocean properties. Furthermore, we identified pteropod shells to be excellent recorders of climate change, as carbonate ion concentration and temperature in the upper water column have dominant influences on pteropod shell carbon and oxygen isotopic composition. These results, in combination with a broad distribution and high abundance, make the pteropod species studied here, H. inflatus, a promising new proxy carrier in paleoceanography

    Intercomparison of carbonate chemistry measurements on a cruise in northwestern European shelf seas

    Get PDF
    Four carbonate system variables were measured in surface waters during a cruise aimed at investigating ocean acidification impacts traversing northwestern European shelf seas in the summer of 2011. High-resolution surface water data were collected for partial pressure of carbon dioxide (pCO2; using two independent instruments) and pH using the total pH scale (pHT), in addition to discrete measurements of total alkalinity and dissolved inorganic carbon. We thus overdetermined the carbonate system (four measured variables, two degrees of freedom), which allowed us to evaluate the level of agreement between the variables on a cruise whose main aim was not intercomparison, and thus where conditions were more representative of normal working conditions. Calculations of carbonate system variables from other measurements generally compared well with direct observations of the same variables (Pearson’s correlation coefficient always greater than or equal to 0.94; mean residuals were similar to the respective accuracies of the measurements). We therefore conclude that four of the independent data sets of carbonate chemistry variables were of high quality. A diurnal cycle with a maximum amplitude of 41 μatm was observed in the difference between the pCO2 values obtained by the two independent analytical pCO2 systems, and this was partly attributed to irregular seawater flows to the equilibrator and partly to biological activity inside the seawater supply and one of the equilibrators. We discuss how these issues can be addressed to improve carbonate chemistry data quality on future research cruises

    Derivation of seawater <i>p</i>CO<sub>2</sub> from net community production identifies the South Atlantic Ocean as a CO<sub>2</sub> source

    Get PDF
    A key step in assessing the global carbon budget is the determination of the partial pressure of CO2 in seawater (pCO2 (sw)). Spatially complete observational fields of pCO2 (sw) are routinely produced for regional and global ocean carbon budget assessments by extrapolating sparse in situ measurements of pCO2 (sw) using satellite observations. As part of this process, satellite chlorophyll a (Chl a) is often used as a proxy for the biological drawdown or release of CO2. Chl a does not, however, quantify carbon fixed through photosynthesis and then respired, which is determined by net community production (NCP). In this study, pCO2 (sw) over the South Atlantic Ocean is estimated using a feed forward neural network (FNN) scheme and either satellite-derived NCP, net primary production (NPP) or Chl a to compare which biological proxy produces the most accurate fields of pCO2 (sw) . Estimates of pCO2 (sw) using NCP, NPP or Chl a were similar, but NCP was more accurate for the Amazon Plume and upwelling regions, which were not fully reproduced when using Chl a or NPP. A perturbation analysis assessed the potential maximum reduction in pCO2 (sw) uncertainties that could be achieved by reducing the uncertainties in the satellite biological parameters. This illustrated further improvement using NCP compared to NPP or Chl a. Using NCP to estimate pCO2 (sw) showed that the South Atlantic Ocean is a CO2 source, whereas if no biological parameters are used in the FNN (following existing annual carbon assessments), this region appears to be a sink for CO2. These results highlight that using NCP improved the accuracy of estimating pCO2 (sw) and changes the South Atlantic Ocean from a CO2 sink to a source. Reducing the uncertainties in NCP derived from satellite parameters will ultimately improve our understanding and confidence in quantification of the global ocean as a CO2 sink

    Surface ocean carbon dioxide during the Atlantic Meridional Transect (1995–2013); evidence of ocean acidification

    Get PDF
    Here we present more than 21,000 observations of carbon dioxide fugacity in air and seawater (fCO2) along the Atlantic Meridional Transect (AMT) programme for the period 1995–2013. Our dataset consists of 11 southbound and 2 northbound cruises in boreal autumn and spring respectively. Our paper is primarily focused on change in the surface-ocean carbonate system during southbound cruises. We used observed fCO2 and total alkalinity (TA), derived from salinity and temperature, to estimate dissolved inorganic carbon (DIC) and pH (total scale). Using this approach, estimated pH was consistent with spectrophotometric measurements carried out on 3 of our cruises. The AMT cruises transect a range of biogeographic provinces where surface Chlorophyll-a spans two orders of magnitude (mesotrophic high latitudes to oligotrophic subtropical gyres). We found that surface Chlorophyll-a was negatively correlated with fCO2, but that the deep chlorophyll maximum was not a controlling variable for fCO2. Our data show clear evidence of ocean acidification across 100� of latitude in the Atlantic Ocean. Over the period 1995–2013 we estimated annual rates of change in: (a) sea surface temperature of 0.01 ± 0.05 �C, (b) seawater fCO2 of 1.44 ± 0.84 latm, (c) DIC of 0.87 ± 1.02 lmol per kg and (d) pH of �0.0013 ± 0.0009 units. Monte Carlo simulations propagating the respective analytical uncertainties showed that the latter were < 5% of the observed trends. Seawater fCO2 increased at the same rate as atmospheric CO2

    Uncertainties in eddy covariance air–sea CO&lt;sub&gt;2&lt;/sub&gt; flux measurements and implications for gas transfer velocity parameterisations

    Get PDF
    Air–sea carbon dioxide (CO2) flux is often indi�rectly estimated by the bulk method using the air–sea difference in CO2 fugacity (1f CO2) and a parameterisation of the gas transfer velocity (K). Direct flux measurements by eddy covariance (EC) provide an independent reference for bulk flux estimates and are often used to study processes that drive K. However, inherent uncertainties in EC air–sea CO2 flux measurements from ships have not been well quantified and may confound analyses of K. This paper evaluates the uncertainties in EC CO2 fluxes from four cruises. Fluxes were measured with two state-of-the-art closed-path CO2 analysers on two ships. The mean bias in the EC CO2 flux is low, but the random error is relatively large over short timescales. The uncertainty (1 standard deviation) in hourly averaged EC air–sea CO2 fluxes (cruise mean) ranges from 1.4 to 3.2 mmolm−2 d−1. This corresponds to a relative uncertainty of ∼ 20 % during two Arctic cruises that observed large CO2 flux magnitude. The relative uncertainty was greater (∼ 50 %) when the CO2 flux magnitude was small during two Atlantic cruises. Random uncertainty in the EC CO2 flux is mostly caused by sampling error. Instrument noise is relatively unimportant. Random uncertainty in EC CO2 fluxes can be reduced by averaging for longer. However, averaging for too long will result in the inclusion of more natural variability. Auto-covariance analysis of CO2 fluxes suggests that the optimal timescale for averaging EC CO2 flux measurements ranges from 1 to 3 h, which increases the mean signal-to-noise ratio of the four cruises to higher than 3. Applying an appropriate averaging timescale and suitable 1f CO2 threshold (20 µatm) to EC flux data enables an optimal analysis of K

    Sensitivity of Modeled CO2 Air–Sea Flux in a Coastal Environment to Surface Temperature Gradients, Surfactants, and Satellite Data Assimilation

    Get PDF
    This work evaluates the sensitivity of CO2 air–sea gas exchange in a coastal site to four different model system configurations of the 1D coupled hydrodynamic–ecosystem model GOTM–ERSEM, towards identifying critical dynamics of relevance when specifically addressing quantification of air–sea CO2 exchange. The European Sea Regional Ecosystem Model (ERSEM) is a biomass and functional group-based biogeochemical model that includes a comprehensive carbonate system and explicitly simulates the production of dissolved organic carbon, dissolved inorganic carbon and organic matter. The model was implemented at the coastal station L4 (4 nm south of Plymouth, 50°15.00’N, 4°13.02’W, depth of 51 m). The model performance was evaluated using more than 1500 hydrological and biochemical observations routinely collected at L4 through the Western Coastal Observatory activities of 2008—2009. In addition to a reference simulation (A), we ran three distinct experiments to investigate the sensitivity of the carbonate system and modeled air–sea fluxes to (B) the sea-surface temperature (SST) diurnal cycle and thus also the near-surface verticalgradients,(C)biologicalsuppressionofgasexchangeand(D)dataassimilationusingsatellite Earth observation data. The reference simulation captures well the physical environment (simulated SST has a correlation with observations equal to 0.94 with a p > 0.95). Overall, the model captures the seasonal signal in most biogeochemical variables including the air–sea flux of CO2 and primary production and can capture some of the intra-seasonal variability and short-lived blooms. The model correctlyreproducestheseasonalityofnutrients(correlation>0.80forsilicate,nitrateandphosphate), surface chlorophyll-a (correlation > 0.43) and total biomass (correlation > 0.7) in a two year run for 2008–2009. The model simulates well the concentration of DIC, pH and in-water partial pressure of CO2 (pCO2) with correlations between 0.4–0.5. The model result suggest that L4 is a weak net source of CO2 (0.3–1.8 molCm−2 year−1). The results of the three sensitivity experiments indicate that both resolving the temperature profile near the surface and assimilation of surface chlorophyll-a significantlyimpacttheskillofsimulatingthebiogeochemistryatL4andallofthecarbonatechemistry related variables. These results indicate that our forecasting ability of CO2 air–sea flux in shelf seas environments and their impact in climate modeling should consider both model refinements as means of reducing uncertainties and errors in any future climate projections

    Determining Atlantic Ocean province contrasts and variations

    Get PDF
    The Atlantic Meridional Transect (AMT) series of twenty-five cruises over the past twenty years has produced a rich depth-resolved biogeochemical in situ data resource consisting of a wealth of core variables. These multiple core datasets, key to the operation of AMT, such as temperature, salinity, oxygen and inorganic nutrients, are often only used as ancillary measurements for contextualising hypothesis-driven process studies. In this paper these core in situ variables, alongside data drawn from satellite Earth Observation (EO) and modelling, have been analysed to determine characteristic oceanic province variations encountered over the last twenty years on the AMT through the Atlantic Ocean. The EO and modelling analysis shows the variations of key environmental variables in each province, such as surface currents, the net heat flux and subsequent large scale biological responses, such as primary production. The in situ core dataset analysis allows the variation in features such as the tropical oxygen minimum zone to be quantified as well as showing clear contrasts between the provinces in nutrient stoichiometry. Such observations and relationships can be used within basin scale biogeochemical models to set realistic variation ranges

    Insights from year-long measurements of air–water CH4 and CO2 exchange in a coastal environment

    Get PDF
    Air–water CH4 and CO2 fluxes were directly measured using the eddy covariance technique at the Penlee Point Atmospheric Observatory on the southwest coast of the United Kingdom from September 2015 to August 2016. The high-frequency, year-long measurements provide unprecedented detail on the variability of these greenhouse gas fluxes from seasonal to diurnal and to semi-diurnal (tidal) timescales. Depending on the wind sector, fluxes measured at this site are indicative of air–water exchange in coastal seas as well as in an outer estuary. For the open-water sector when winds were off the Atlantic Ocean, CH4 flux was almost always positive (annual mean of ∼0.05 mmol m−2 d−1) except in December and January, when CH4 flux was near zero. At times of high rainfall and river flow rate, CH4 emission from the estuarine-influenced Plymouth Sound sector was several times higher than emission from the open-water sector. The implied CH4 saturation (derived from the measured fluxes and a wind-speed-dependent gas transfer velocity parameterization) of over 1000 % in the Plymouth Sound is within range of in situ dissolved CH4 measurements near the mouth of the river Tamar. CO2 flux from the open-water sector was generally from sea to air in autumn and winter and from air to sea in late spring and summer, with an annual mean flux of near zero. A diurnal signal in CO2 flux and implied partial pressure of CO2 in water (pCO2) are clearly observed for the Plymouth Sound sector and also evident for the open-water sector during biologically productive periods. These observations suggest that coastal CO2 efflux may be underestimated if sampling strategies are limited to daytime only. Combining the flux data with seawater pCO2 measurements made in situ within the flux footprint allows us to estimate the CO2 transfer velocity. The gas transfer velocity and wind speed relationship at this coastal location agrees reasonably well with previous open-water parameterizations in the mean but demonstrates considerable variability. We discuss the influences of biological productivity, bottom-driven turbulence and rainfall on coastal air–water gas exchange

    Near‐Surface Stratification Due to Ice Melt Biases Arctic Air‐Sea CO 2 Flux Estimates

    Get PDF
    Air-sea carbon dioxide (CO2) flux is generally estimated by the bulk method using upper ocean CO2 fugacity measurements. In the summertime Arctic, sea-ice melt results in stratification within the upper ocean (top ∼10 m), which can bias bulk CO2 flux estimates when the seawater CO2 fugacity is taken from a ship's seawater inlet at ∼6 m depth (fCO2w_bulk). Direct flux measurements by eddy covariance are unaffected by near-surface stratification. We use eddy covariance CO2 flux measurements to infer sea surface CO2 fugacity (fCO2w_surface) in the Arctic Ocean. In sea-ice melt regions, fCO2w_surface values are consistently lower than fCO2w_bulk by an average of 39 μatm. Lower fCO2w_surface can be partially accounted for by fresher (≥27%) and colder (17%) melt waters. A back-of-the-envelope calculation shows that neglecting the summertime sea-ice melt could lead to a 6%–17% underestimate of the annual Arctic Ocean CO2 uptake

    The role of a changing Arctic Ocean and climate for the biogeochemical cycling of dimethyl sulphide and carbon monoxide

    Get PDF
    Dimethyl sulphide (DMS) and carbon monoxide(CO) are climate-relevant trace gases that play key roles in the radiative budget of the Arctic atmosphere. Under global warming, Arctic sea ice retreats at an unprecedented rate, altering light penetration and biological communities, and potentially affect DMS and CO cycling in the Arctic Ocean. This could have socio-economic implications in and beyond the Arctic region. However, little is known about CO production pathways and emissions in this region and the future development of DMS and CO cycling. Here we summarize the current understanding and assess potential future changes of DMS and CO cycling in relation to changes in sea ice coverage, light penetration, bacterial and microalgal communities, pH and physical properties. We suggest that production of DMS and CO might increase with ice melting, increasing light availability and shifting phytoplankton community. Among others, policy measures should facilitate large scale process studies, coordinated long term observations and modelling efforts to improve our current understanding of the cycling and emissions of DMS and CO in the Arctic Ocean and of global consequences
    corecore