845 research outputs found

    Taxonomy and palaeobiogeography of the Cenozoic Euro-Mediterranean rissoid gastropod Galeodinopsis and its relationship with close genera

    Get PDF
    The investigation of the Late Paleogene to Late Neogene species of rissoid gastropod Galeodinopsis in the Euro-Mediterranean area has supported the hypothesis that this genus is an intermediate form between two well-known rissoids, Alvinia and Manzonia. We recognized four species of Galeodinopsis: G. biangulata, G. germanica sp. nov., G. semperi (new name for Rissoa duboisii), and G. tiberiana. The oldest (very Late Eocene/Oligocene) representatives of Galeodinopsis, G. biangulata, and G. semperi, share similar shell shape and microsculpture with Alvinia. This suggests that Galeodinopsis originated from some Eocene species related to Alvinia. The new species represents the first occurrence within Galeodinopsis of a combination of characters very close to those of Manzonia, above all the typical pitted microsculpture. We hypothesize that Manzonia evolved from Galeodinopsis rather than from the genera Alvania or Alvinia, as previously supposed. Galeodinopsis originated during the very Late Eocene/Oligocene in the North Sea Basin. Afterwards it underwent a strong southward shift to the mid-high east Atlantic and the Mediterranean area, during the Mio-Pliocene, and to the Recent tropical eastern Atlantic coasts, where the type species G. tiberiana still lives. The shift likely was due to a combination of climate cooling and palaeogeographical changes. The distribution of G. biangulata suggests that connections between the North Sea Basin and the Atlantic domain opened through the Channel area at least during the Early Oligocene, earlier than indicated previously. The distribution of Manzonia moulinsi supports the idea of a southern connection to the Atlantic Aquitaine Basin via the Rhine Graben during the Late Oligocene. From a palaeoecological point of view, Galeodinopsis includes warm species with planktotrophic larval development that are typical of the shelf environment in fully marine conditions

    A new Miocene deep-sea chiton and early evidence for Teredinidae-sustained wood-fall communities

    Get PDF
    Deep-sea wood-falls are important biodiversity hot spots for insights on chemosynthesis-based communities. The study of deep-sea wood-fall-related palaeocommunities from the Neogene of north Italy shed light on interesting associations from the Miocene of Torrente Cinghio (Tortonian) and of Moncasale di Casina (Langhian). The most common components of this association are typical chemosynthetic/wood-fall molluscs, such as the gastropods Homalopoma sp. and Pseudonina bellardii, the bivalves Idas sp. and shipworms, and the chiton Leptochiton lignatilis n. sp., which belongs to a genus typical of recent sunken woods in tropical waters. The new species described is compared with other fossil and recent congeners, especially with those sharing the same kind of tegmental sculpture, fully covered with randomly or quincuncially arranged granules. An overview of the sunken wood-related chitons is provided. Surprisingly no taxa of the boring bivalves of the family Xylophagidae, whose species have been known to be fundamental for sustaining this kind of deep sea chemosynthetic ecosystem, were found in the studied site; however, other boring Teredinidae bivalves have been abundantly recovered. This suggests that, conversely to what has previously been observed on sunken wood communities, Teredinidae may be viewed as a counterpart for the maintenance of deep-sea wood-fall ecosystems

    Automated reliability assessment for spectroscopic redshift measurements

    Get PDF
    We present a new approach to automate the spectroscopic redshift reliability assessment based on machine learning (ML) and characteristics of the redshift probability density function (PDF). We propose to rephrase the spectroscopic redshift estimation into a Bayesian framework, in order to incorporate all sources of information and uncertainties related to the redshift estimation process, and produce a redshift posterior PDF that will be the starting-point for ML algorithms to provide an automated assessment of a redshift reliability. As a use case, public data from the VIMOS VLT Deep Survey is exploited to present and test this new methodology. We first tried to reproduce the existing reliability flags using supervised classification to describe different types of redshift PDFs, but due to the subjective definition of these flags, soon opted for a new homogeneous partitioning of the data into distinct clusters via unsupervised classification. After assessing the accuracy of the new clusters via resubstitution and test predictions, unlabelled data from preliminary mock simulations for the Euclid space mission are projected into this mapping to predict their redshift reliability labels.Comment: Submitted on 02 June 2017 (v1). Revised on 08 September 2017 (v2). Latest version 28 September 2017 (this version v3

    Lyman-alpha absorption around nearby galaxies

    Full text link
    We have used STIS aboard HST to search for Lyman-alpha (Lya) absorption lines in the outer regions of eight nearby galaxies using background QSOs and AGN as probes. Lya lines are detected within a few hundred km/s of the systemic velocity of the galaxy in all cases. We conclude that a background line-of-sight which passes within 26-200 h-1 kpc of a foreground galaxy is likely to intercept low column density neutral hydrogen with log N(HI) >~ 13.0. The ubiquity of detections implies a covering factor of ~ 100% for low N(HI) gas around galaxies within 200 h-1 kpc. We discuss the difficulty in trying to associate individual absorption components with the selected galaxies and their neighbors, but show that by degrading our STIS data to lower resolutions, we are able to reproduce the anti-correlation of Lya equivalent width and impact parameter found at higher redshift. We also show that the equivalent width and column density of Lya complexes (when individual components are summed over ~ 1000 km/s) correlate well with a simple estimate of the volume density of galaxies brighter than M(B) = -17.5 at the same redshift as a Lya complex. We do not reject the hypothesis that the selected galaxies are directly responsible for the observed Lya lines, but our analysis indicates that absorption by clumpy intragroup gas is an equally likely explanation. (Abriged)Comment: Accepted for publication in Nov 20, 2002 issue of ApJ. Paper with all figures can be found at http://www.astro.princeton.edu/~dvb/lyapaper.ps (preferable). Minor typos fixe

    The extended epoch of galaxy formation: age dating of ~3600 galaxies with 2<z<6.5 in the VIMOS Ultra-Deep Survey

    Get PDF
    We aim at improving constraints on the epoch of galaxy formation by measuring the ages of 3597 galaxies with spectroscopic redshifts 2<z<6.5 in the VIMOS Ultra Deep Survey (VUDS). We derive ages and other physical parameters from the simultaneous fitting with the GOSSIP+ software of observed UV rest-frame spectra and photometric data from the u-band up to 4.5 microns using composite stellar population models. We conclude from extensive simulations that at z>2 the joint analysis of spectroscopy and photometry combined with restricted age possibilities when taking into account the age of the Universe substantially reduces systematic uncertainties and degeneracies in the age derivation. We find galaxy ages ranging from very young with a few tens of million years to substantially evolved with ages up to ~1.5-2 Gyr. The formation redshifts z_f derived from the measured ages indicate that galaxies may have started forming stars as early as z_f~15. We produce the formation redshift function (FzF), the number of galaxies per unit volume formed at a redshift z_f, and compare the FzF in increasing redshift bins finding a remarkably constant 'universal' FzF. The FzF is parametrized with (1+z)^\zeta, with \zeta~0.58+/-0.06, indicating a smooth 2 dex increase from z~15 to z~2. Remarkably this observed increase is of the same order as the observed rise in the star formation rate density (SFRD). The ratio of the SFRD with the FzF gives an average SFR per galaxy of ~7-17Msun/yr at z~4-6, in agreement with the measured SFR for galaxies at these redshifts. From the smooth rise in the FzF we infer that the period of galaxy formation extends from the highest possible redshifts that we can probe at z~15 down to redshifts z~2. This indicates that galaxy formation is a continuous process over cosmic time, with a higher number of galaxies forming at the peak in SFRD at z~2 than at earlier epochs. (Abridged)Comment: Submitted to A&A, 24 page

    The VIPERS Multi-Lambda Survey. II. Diving with massive galaxies in 22 square degrees since z = 1.5

    Get PDF
    We investigate the evolution of the galaxy stellar mass function (SMF) and stellar mass density from redshift z=0.2 to z=1.5 of a KABK_{AB}<22-selected sample with highly reliable photometric redshifts and over an unprecedentedly large area. Our study is based on NIR observations carried out with WIRCam at CFHT over the footprint of the VIPERS spectroscopic survey and benefits from the high quality optical photometry from the CFHTLS and UV observations with the GALEX satellite. The accuracy of our photometric redshifts is σz\sigma_z < 0.03 and 0.05 for the bright (iABi_{AB}22.5) samples, respectively. The SMF is measured with ~760,000 galaxies down to KsK_s=22 and over an effective area of ~22.4 deg2^2, the latter of which drastically reduces the statistical uncertainties (i.e. Poissonian error & cosmic variance). We point out the importance of a careful control of the photometric calibration, whose impact becomes quickly dominant when statistical uncertainties are reduced, which will be a major issue for future generation of cosmological surveys with, e.g. EUCLID or LSST. By exploring the rest-frame (NUV-r) vs (r-KsK_s) color-color diagram separating star-forming and quiescent galaxies, (1) we find that the density of very massive log(M∗/M⊙M_*/ M_{\odot}) > 11.5 galaxies is largely dominated by quiescent galaxies and increases by a factor 2 from z~1 to z~0.2, which allows for additional mass assembly via dry mergers, (2) we confirm a scenario where star formation activity is impeded above a stellar mass log(MSF∗/M⊙M^*_{SF} / M_{\odot}) = 10.64±\pm0.01, a value that is found to be very stable at 0.2 < z < 1.5, (3) we discuss the existence of a main quenching channel that is followed by massive star-forming galaxies, and finally (4) we characterise another quenching mechanism required to explain the clear excess of low-mass quiescent galaxies observed at low redshift.Comment: 22 pages, 20 figures. Accepted for publication in A&A. Version to be publishe

    MASSIV: Mass Assembly Survey with SINFONI in VVDS. VI. Metallicity-related fundamental relations in star-forming galaxies at 1<z<21 < z < 2

    Full text link
    The MASSIV (Mass Assembly Survey with SINFONI in VVDS) project aims at finding constraints on the different processes involved in galaxy evolution. This study proposes to improve the understanding of the galaxy mass assembly through chemical evolution using the metallicity as a tracer of the star formation and interaction history. Methods. We analyse the full sample of MASSIV galaxies for which a metallicity estimate has been possible, that is 48 star-forming galaxies at z∌0.9−1.8z\sim 0.9-1.8, and compute the integrated values of some fundamental parameters, such as the stellar mass, the metallicity and the star formation rate (SFR). The sample of star-forming galaxies at similar redshift from zCOSMOS (P\'erez-Montero et al. 2013) is also combined with the MASSIV sample. We study the cosmic evolution of the mass-metallicty relation (MZR) together with the effect of close environment and galaxy kinematics on this relation. We then focus on the so-called fundamental metallicity relation (FMR) proposed by Mannucci et al. (2010) and other relations between stellar mass, SFR and metallicity as studied by Lara-L\'opez et al. (2010). We investigate if these relations are really fundamental, i.e. if they do not evolve with redshift. Results. The MASSIV galaxies follow the expected mass-metallicity relation for their median redshift. We find however a significant difference between isolated and interacting galaxies as found for local galaxies: interacting galaxies tend to have a lower metallicity. The study of the relation between stellar mass, SFR and metallicity gives such large scattering for our sample, even combined with zCOSMOS, that it is diffcult to confirm or deny the existence of a fundamental relation

    HeII emitters in the VIMOS VLT Deep Survey: PopIII star formation or peculiar stellar populations in galaxies at 2<z<4.6?

    Get PDF
    The aim of this work is to identify HeII emitters at 2<z<4.6 and to constrain the source of the hard ionizing continuum that powers the HeII emission. We have assembled a sample of 277 galaxies with a high quality spectroscopic redshift at 2<z<4.6 from the VVDS survey, and we have identified 39 HeII1640A emitters. We study their spectral properties, measuring the fluxes, equivalent widths (EW) and FWHM for most relevant lines. About 10% of galaxies at z~3 show HeII in emission, with rest frame equivalent widths EW0~1-7A, equally distributed between galaxies with Lya in emission or in absorption. We find 11 high-quality HeII emitters with unresolved HeII line (FWHM_0<1200km/s), 13 high-quality emitters with broad He II emission (FWHM_0>1200km/s), 3 AGN, and an additional 12 possible HeII emitters. The properties of the individual broad emitters are in agreement with expectations from a W-R model. On the contrary, the properties of the narrow emitters are not compatible with such model, neither with predictions of gravitational cooling radiation produced by gas accretion. Rather, we find that the EW of the narrow HeII line emitters are in agreement with expectations for a PopIII star formation, if the episode of star formation is continuous, and we calculate that a PopIII SFR of 0.1-10 Mo yr-1 only is enough to sustain the observed HeII flux. We conclude that narrow HeII emitters are either powered by the ionizing flux from a stellar population rare at z~0 but much more common at z~3, or by PopIII star formation. As proposed by Tornatore et al. (2007), incomplete ISM mixing may leave some small pockets of pristine gas at the periphery of galaxies from which PopIII may form, even down to z~2 or lower. If this interpretation is correct, we measure at z~3 a SFRD in PopIII stars of 10^6Mo yr^-1 Mpc^-3 qualitatively comparable to the value predicted by Tornatore et al. (2007).Comment: accepted for publication in A&
    • 

    corecore