2,625 research outputs found

    Integrated Numerical Modelling System for Extreme Wave Events at the Wave Hub Site

    Get PDF
    This paper examines an extreme wave event which occurred during a storm at the Wave Hub site in 2012. The extreme wave of 9.57 m height was identified from a time series of the heave data collected by an Oceanor Seawatch Mini II Buoy deployed at the site. An energy density spectrum was derived from this time series and then used to drive a physical model, which represents the extreme wave at 1:20 scale in Plymouth University’s new COAST Lab. The NewWave technique was used to define the input to the physical model. The experiment is reproduced in a numerical wave tank using the fully nonlinear CFD library OpenFOAM® and the wave generation toolbox waves2Foam. Results are evaluated, and issues regarding the predictions of a numerical model that is driven by the NewWave input signal are discussed. This study sets the basis for further research in coupling field data, physical modelling and numerical modelling in a more efficient and balanced way. This will lead to the new approach of composite modelling that will be implemented in future work

    Experimental constraints on the uncoupled Galileon model from SNLS3 data and other cosmological probes

    Get PDF
    The Galileon model is a modified gravity theory that may provide an explanation for the accelerated expansion of the Universe. This model does not suffer from instabilities or ghost problems (normally associated with higher-order derivative theories), restores local General Relativity -- thanks to the Vainshtein screening effect -- and predicts late time acceleration of the expansion. In this paper, we derive a new definition of the Galileon parameters that allows us to avoid having to choose initial conditions for the Galileon field, and then test this model against precise measurements of the cosmological distances and the rate of growth of cosmic structures. We observe a small tension between the constraints set by growth data and those from distances. However, we find that the Galileon model remains consistent with current observations and is still competitive with the \Lambda CDM model, contrary to what was concluded in recent publications.Comment: 19 pages, 15 figures, accepted to Astronomy and Astrophysic

    Sustained gene expression in the retina by improved episomal vectors

    Get PDF
    Gene and cellular therapies are nowadays part of therapeutic strategies for the treatment of diverse pathologies. The drawbacks associated with gene therapy-low levels of transgene expression, vector loss during mitosis, and gene silencing-need to be addressed. The pEPI-1 and pEPito family of vectors was developed to overcome these limitations. It contains a scaffold/matrix attachment region, which anchors its replication to cell division in eukaryotic cells while in an extrachromosomal state and is less prone to silencing, due to a lower number of CpG motifs. Recent success showed that ocular gene therapy is an important tool for the treatment of several diseases, pending the overcome of the aforementioned limitations. To achieve sustained gene delivery in the retina, we evaluated several vectors based on pEPito and pEPI-1 for their ability to sustain transgene expression in retinal cells. These vectors stably transfected and replicated in retinal pigment epithelial (RPE) cells. Expression levels were promoter dependent with constitutive promoters cytomegalovirus immediate early promoter (CMV) and human CMV enhancer/human elongation factor 1 alpha promoter yielding the highest levels of transgene expression compared with the retina-specific RPE65 promoter. When injected in C57Bl6 mice, transgene expression was sustained for at least 32 days. Furthermore, the retina-specific RPE65 promoter showed higher efficiency in vivo compared to in vitro. In this study, we demonstrate that by combining tissue-specific promoters with a mitotic stable system, less susceptible to epigenetic silencing such as pEPito-based plasmids, we can achieve prolonged gene expression and a sustained therapeutic effect.Fundacao para a Ciencia e Tecnologia, Portugal [PEst/OE/EQB-LA 0023/2013, SFRH/BD/76873/2011, SFRH/BD/70318/2010, PTDC/SAU/BEB/098475/2008]; European Union [PIRG-GA-2009-249314

    Evaluation of turbulence closure models under spilling and plunging breakers in the surf zone

    Get PDF
    Turbulence closure models are evaluated for application to spilling and plunging breakers in the surf zone using open source computational fluid dynamics software. A new library of turbulence models for application to multiphase flows has been developed and is assessed for numerical efficiency and accuracy by comparing against existing laboratory data for surface elevation, velocity and turbulent kinetic energy profiles. Out of the models considered, it was found that, overall, the best model is the nonlinear k - ϵ model. The model is also shown to exhibit different turbulent characteristics between the different breaker types, consistent with experimental data

    First experimental constraints on the disformally coupled Galileon model

    Get PDF
    The Galileon model is a modified gravity model that can explain the late-time accelerated expansion of the Universe. In a previous work, we derived experimental constraints on the Galileon model with no explicit coupling to matter and showed that this model agrees with the most recent cosmological data. In the context of braneworld constructions or massive gravity, the Galileon model exhibits a disformal coupling to matter, which we study in this paper. After comparing our constraints on the uncoupled model with recent studies, we extend the analysis framework to the disformally coupled Galileon model and derive the first experimental constraints on that coupling, using precise measurements of cosmological distances and the growth rate of cosmic structures. In the uncoupled case, with updated data, we still observe a low tension between the constraints set by growth data and those from distances. In the disformally coupled Galileon model, we obtain better agreement with data and favour a non-zero disformal coupling to matter at the 2.5σ2.5\sigma level. This gives an interesting hint of the possible braneworld origin of Galileon theory.Comment: 9 pages, 6 figures, updated versio

    Classical Cosmological Tests for Galaxies of the Hubble Ultra Deep Field

    Full text link
    Images of the Hubble Ultra Deep Field are analyzed to obtain a catalog of galaxies for which the angular sizes, surface brightness, photometric redshifts, and absolute magnitudes are found. The catalog contains a total of about 4000 galaxies identified at a high signal-to-noise ratio, which allows the cosmological relations angular size{redshift and surface brightness-redshift to be analyzed. The parameters of the evolution of linear sizes and surface brightness of distant galaxies in the redshift interval 0.5-6.5 are estimated in terms of a grid of cosmological models with different density parameters. The distribution of photometric redshifts of galaxies is analyzed and possible superlarge inhomogeneities in the radial distribution of galaxies are found with scale lengths as large as 2000 Mpc.Comment: 23 pages, 9 figures, 1 tabl

    Cosmology in massive gravity

    Full text link
    We argue that more cosmological solutions in massive gravity can be obtained if the metric tensor and the tensor Σμν\Sigma_{\mu\nu} defined by St\"{u}ckelberg fields take the homogeneous and isotropic form. The standard cosmology with matter and radiation dominations in the past can be recovered and Λ\LambdaCDM model is easily obtained. The dynamical evolution of the universe is modified at very early times.Comment: 4 pages, 1 figure,add more reference

    Constraining Type Ia Supernovae progenitors from three years of SNLS data

    Full text link
    While it is generally accepted that Type Ia supernovae are the result of the explosion of a carbon-oxygen White Dwarf accreting mass in a binary system, the details of their genesis still elude us, and the nature of the binary companion is uncertain. Kasen (2010) points out that the presence of a non-degenerate companion in the progenitor system could leave an observable trace: a flux excess in the early rise portion of the lightcurve caused by the ejecta impact with the companion itself. This excess would be observable only under favorable viewing angles, and its intensity depends on the nature of the companion. We searched for the signature of a non-degenerate companion in three years of Supernova Legacy Survey data by generating synthetic lightcurves accounting for the effects of shocking and comparing true and synthetic time series with Kolmogorov-Smirnov tests. Our most constraining result comes from noting that the shocking effect is more prominent in rest-frame B than V band: we rule out a contribution from white dwarf-red giant binary systems to Type Ia supernova explosions greater than 10% at 2 sigma, and than 20% at 3 sigma level.Comment: 14 pages, 15 figures, resubmitted to ApJ, figure 15 modifie

    Differential operators on supercircle: conformally equivariant quantization and symbol calculus

    Full text link
    We consider the supercircle S1∣1S^{1|1} equipped with the standard contact structure. The conformal Lie superalgebra K(1) acts on S1∣1S^{1|1} as the Lie superalgebra of contact vector fields; it contains the M\"obius superalgebra osp(1∣2)osp(1|2). We study the space of linear differential operators on weighted densities as a module over osp(1∣2)osp(1|2). We introduce the canonical isomorphism between this space and the corresponding space of symbols and find interesting resonant cases where such an isomorphism does not exist
    • …
    corecore