2,310 research outputs found

    The GBT350 Survey of the Northern Galactic Plane for Radio Pulsars and Transients

    Get PDF
    Using the Green Bank Telescope (GBT) and Pulsar Spigot at 350MHz, we have surveyed the Northern Galactic Plane for pulsars and radio transients. This survey covers roughly 1000 square degrees of sky within 75 deg < l < 165 deg and |b| < 5.5 deg, a region of the Galactic Plane inaccessible to both the Parkes and Arecibo multibeam surveys. The large gain of the GBT along with the high time and frequency resolution provided by the Spigot make this survey more sensitive by factors of about 4 to slow pulsars and more than 10 to millisecond pulsars (MSPs), compared with previous surveys of this area. In a preliminary, reduced-resolution search of all the survey data, we have discovered 33 new pulsars, almost doubling the number of known pulsars in this part of the Galaxy. While most of these sources were discovered by normal periodicity searches, 5 of these sources were first identified through single, dispersed bursts. We discuss the interesting properties of some of these new sources. Data processing using the data's full-resolution is ongoing, with the goal of uncovering MSPs missed by our first, coarse round of processing.Comment: To appear in the proceedings of "Forty Years of Pulsars: Millisecond Pulsars, Magnetars and More" held in Montreal, Canada, August 12-17, 2007. 3 pages, 2 figure

    Acceptance and commitment therapy for symptom interference in metastatic breast cancer patients: a pilot randomized trial

    Get PDF
    PURPOSE: Breast cancer is the leading cause of cancer mortality in women worldwide. With medical advances, metastatic breast cancer (MBC) patients often live for years with many symptoms that interfere with activities. However, there is a paucity of efficacious interventions to address symptom-related suffering and functional interference. Thus, this study examined the feasibility and preliminary efficacy of telephone-based acceptance and commitment therapy (ACT) for symptom interference with functioning in MBC patients. METHODS: Symptomatic MBC patients (N = 47) were randomly assigned to six telephone sessions of ACT or six telephone sessions of education/support. Patients completed measures of symptom interference and measures assessing the severity of pain, fatigue, sleep disturbance, depressive symptoms, and anxiety. RESULTS: The eligibility screening rate (64%) and high retention (83% at 8 weeks post-baseline) demonstrated feasibility. When examining within-group change, ACT participants showed decreases in symptom interference (i.e., fatigue interference and sleep-related impairment; Cohen's d range = - 0.23 to - 0.31) at 8 and 12 weeks post-baseline, whereas education/support participants showed minimal change in these outcomes (d range = - 0.03 to 0.07). Additionally, at 12 weeks post-baseline, ACT participants showed moderate decreases in fatigue and sleep disturbance (both ds = - 0.43), whereas education/support participants showed small decreases in these outcomes (ds = - 0.24 and - 0.18 for fatigue and sleep disturbance, respectively). Both the ACT and education/support groups showed reductions in depressive symptoms (ds = - 0.27 and - 0.28) at 12 weeks post-baseline. Group differences in all outcomes were not statistically significant. CONCLUSIONS: ACT shows feasibility and promise in improving fatigue and sleep-related outcomes in MBC patients and warrants further investigation

    Status Update of the Parkes Pulsar Timing Array

    Full text link
    The Parkes Pulsar Timing Array project aims to make a direct detection of a gravitational-wave background through timing of millisecond pulsars. In this article, the main requirements for that endeavour are described and recent and ongoing progress is outlined. We demonstrate that the timing properties of millisecond pulsars are adequate and that technological progress is timely to expect a successful detection of gravitational waves within a decade, or alternatively to rule out all current predictions for gravitational wave backgrounds formed by supermassive black-hole mergers.Comment: 10 pages, 3 figures, Amaldi 8 conference proceedings, accepted by Classical & Quantum Gravit

    Observations of radio pulses from CU Virginis

    Get PDF
    The magnetic chemically peculiar star CU Virginis is a unique astrophysical laboratory for stellar magnetospheres and coherent emission processes. It is the only known main sequence star to emit a radio pulse every rotation period. Here we report on new observations of the CU Virginis pulse profile in the 13 and 20\,cm radio bands. The profile is known to be characterised by two peaks of 100%\% circularly polarised emission that are thought to arise in an electron-cyclotron maser mechanism. We find that the trailing peak is stable at both 13 and 20\,cm, whereas the leading peak is intermittent at 13\,cm. Our measured pulse arrival times confirm the discrepancy previously reported between the putative stellar rotation rates measured with optical data and with radio observations. We suggest that this period discrepancy might be caused by an unknown companion or by instabilities in the emission region. Regular long-term pulse timing and simultaneous multi-wavelength observations are essential to clarify the behaviour of this emerging class of transient radio source.Comment: Accepted by MNRAS Letters; 5 pages, 2 figures, 3 table

    Status and Plans for the Array Control and Data Acquisition System of the Cherenkov Telescope Array

    Full text link
    The Cherenkov Telescope Array (CTA) is the next-generation atmospheric Cherenkov gamma-ray observatory. CTA will consist of two installations, one in the northern, and the other in the southern hemisphere, containing tens of telescopes of different sizes. The CTA performance requirements and the inherent complexity associated with the operation, control and monitoring of such a large distributed multi-telescope array leads to new challenges in the field of the gamma-ray astronomy. The ACTL (array control and data acquisition) system will consist of the hardware and software that is necessary to control and monitor the CTA arrays, as well as to time-stamp, read-out, filter and store -at aggregated rates of few GB/s- the scientific data. The ACTL system must be flexible enough to permit the simultaneous automatic operation of multiple sub-arrays of telescopes with a minimum personnel effort on site. One of the challenges of the system is to provide a reliable integration of the control of a large and heterogeneous set of devices. Moreover, the system is required to be ready to adapt the observation schedule, on timescales of a few tens of seconds, to account for changing environmental conditions or to prioritize incoming scientific alerts from time-critical transient phenomena such as gamma ray bursts. This contribution provides a summary of the main design choices and plans for building the ACTL system.Comment: In Proceedings of the 34th International Cosmic Ray Conference (ICRC2015), The Hague, The Netherlands. All CTA contributions at arXiv:1508.0589

    Constraining Radio Emission from Magnetars

    Full text link
    We report on radio observations of five magnetars and two magnetar candidates carried out at 1950 MHz with the Green Bank Telescope in 2006-2007. The data from these observations were searched for periodic emission and bright single pulses. Also, monitoring observations of magnetar 4U0142+61 following its 2006 X-ray bursts were obtained. No radio emission was detected was detected for any of our targets. The non-detections allow us to place luminosity upper limits (at 1950 MHz) of approximately L < 1.60 mJy kpc^2 for periodic emission and L < 7.6 Jy kpc^2 for single pulse emission. These are the most stringent limits yet for the magnetars observed. The resulting luminosity upper limits together with previous results are discussed, as is the importance of further radio observations of radio-loud and radio-quiet magnetars.Comment: 11 pages, 4 figure

    Development of a pulsar-based timescale

    Get PDF
    Using observations of pulsars from the Parkes Pulsar Timing Array (PPTA) project we develop the first pulsar-based timescale that has a precision comparable to the uncertainties in international atomic timescales. Our ensemble of pulsars provides an Ensemble Pulsar Scale (EPS) analogous to the free atomic timescale Echelle Atomique Libre (EAL). The EPS can be used to detect fluctuations in atomic timescales and therefore can lead to a new realisation of Terrestrial Time, TT(PPTA11). We successfully follow features known to affect the frequency of the International Atomic Timescale (TAI) and we find marginally significant differences between TT(PPTA11) and TT(BIPM11). We discuss the various phenomena that lead to a correlated signal in the pulsar timing residuals and therefore limit the stability of the pulsar timescale.Comment: Accepted for publication in MNRA

    New benzene absorption cross sections in the VUV, relevance for Titan’s upper atmosphere

    Get PDF
    This is a pre-print (pre-peer review) manuscript. It is moderately different from the accepted manuscript and from the published article. Citation of published article: Fernando J. Capalbo, Yves Bénilan, Nicolas Fray, Martin Schwell, Norbert Champion, Et-touhami Es-sebbar, Tommi T. Koskinen, Ivan Lehocki, Roger V. Yelle. Icarus, vol. 265, p. 95 - 109. February 2016. doi: 10.1016/j.icarus.2015.10.006.International audienceBenzene is an important molecule in Titan’s atmosphere because it is a potential link between the gas phase and the organic solid phase. We measured photoabsorption in the ultraviolet by benzene gas at temperatures covering the range from room temperature to 215 K. We derived benzene absorption cross sections and analyzed them in terms of the transitions observed. No significant variation with measurement temperature was observed. We discuss the implications of our measurements for the derivation of benzene abundance profiles in Titan’s thermosphere, by the Cassini/Ultraviolet Imaging Spectrograph (UVIS). The use of absorption cross sections at low temperature is recommended to avoid small systematic uncertainties in the profiles. We used our measurements, together with absorption cross sections from other molecules, to analyze four stellar occultations by Titan, measured by UVIS during flybys T21, T41, T41_II, and T53. We derived and compared benzene abundance profiles in Titan’s thermosphere between approximately 530 and 1000 km, for different dates and geographical locations. The comparisons of our benzene profiles with each other, and with profiles from models of the upper atmosphere, point to a complex behavior that is not explained by current photochemical models
    corecore