251 research outputs found

    A Distributed Model of Carbohydrate Transport and Metabolism in the Liver During Rest and High-Intensity Exercise

    Get PDF
    A model of reaction and transport in the liver was developed that describes the metabolite concentration and reaction flux dynamics separately within the tissue and blood domains. The blood domain contains equations for convection, axial dispersion, and transport to the surrounding tissue; and the tissue domain consists of reactions representing key carbohydrate metabolic pathways. The model includes the metabolic heterogeneity of the liver by incorporating spatial variation of key enzymatic maximal activities. Simulation results of the overnight fasted, resting state agree closely with experimental values of overall glucose uptake and lactate output by the liver. The incorporation of zonation of glycolytic and gluconeogenic enzyme activities causes the expected increase in glycolysis and decrease in gluconeogenesis along the sinusoid length from periportal to perivenous regions, while fluxes are nearly constant along the sinusoid length in the absence of enzyme zonation. These results confirm that transport limitations are not sufficient to account for the observed tissue heterogeneity of metabolic fluxes. Model results indicate that changes in arterial substrate concentrations and hepatic blood flow rate, which occur in the high-intensity exercise state, are not sufficient to shift the liver metabolism enough to account for the 5-fold increase in hepatic glucose production measured during exercise. Changes in maximal activities, whether caused by exercise-induced changes in insulin, glucagon, or other hormones are shown to be needed to achieve the expected glucose output. This model provides a framework for evaluating the relative importance to hepatic function of various phenomenological changes that occur during exercise. The model can also be used to assess the potential effect of metabolic heterogeneity on metabolism

    'You are you and the app. There's nobody else.': Building Worker-Designed Data Institutions within Platform Hegemony

    Get PDF
    Information asymmetries create extractive, often harmful relationships between platform workers (e.g., Uber or Deliveroo drivers) and their algorithmic managers. Recent HCI studies have put forward more equitable platform designs but leave open questions about the social and technical infrastructures required to support them without the cooperation of platforms. We conducted a participatory design study in which platform workers deconstructed and re-imagined Uber's schema for driver data. We analyzed the data structures and social institutions participants proposed, focusing on the stakeholders, roles, and strategies for mitigating conflicting interests of privacy, personal agency, and utility. Using critical theory, we reflected on the capability of participatory design to generate bottom-up collective data infrastructures. Based on the plurality of alternative institutions participants produced and their aptitude to navigate data stewardship decisions, we propose user-configurable tools for lightweight data institution building, as an alternative to redesigning existing platforms or delegating control to centralized trusts

    Characteristic mTOR activity in Hodgkin-lymphomas offers a potential therapeutic target in high risk disease – a combined tissue microarray, in vitro and in vivo study

    Get PDF
    BACKGROUND: Targeting signaling pathways is an attractive approach in many malignancies. The PI3K/Akt/mTOR pathway is activated in a number of human neoplasms, accompanied by lower overall and/or disease free survival. mTOR kinase inhibitors have been introduced in the therapy of renal cell carcinoma and mantle cell lymphoma, and several trials are currently underway. However, the pathological characterization of mTOR activity in lymphomas is still incomplete. METHODS: mTOR activity and the elements of mTOR complexes were investigated by immunohistochemistry on tissue microarrays representing different human non-Hodgkin-lymphomas (81 cases) and Hodgkin-lymphomas (87 cases). The expression of phospho-mTOR, phospho-4EBP1, phospho-p70S6K, phospho-S6, Rictor, Raptor and Bcl-2, Bcl-xL, Survivin and NF-kappaB-p50 were evaluated, and mTOR activity was statistically analyzed along with 5-year survival data. The in vitro and in vivo effect of the mTOR inhibitor rapamycin was also examined in human Hodgkin-lymphoma cell lines. RESULTS: The majority (>50%) of mantle cell lymphoma, Burkitt lymphoma, diffuse large B-cell lymphoma, anaplastic large-cell lymphoma and Hodgkin-lymphoma cases showed higher mTOR activity compared to normal lymphoid tissues. Hodgkin-lymphoma was characterized by high mTOR activity in 93% of the cases, and Bcl-xL and NF-kappaB expression correlated with this mTOR activity. High mTOR activity was observed in the case of both favorable and unfavorable clinical response. Low mTOR activity was accompanied by complete remission and at least 5-year disease free survival in Hodgkin-lymphoma patients. However, statistical analysis did not identify correlation beetween mTOR activity and different clinical data of HL patients, such as survival. We also found that Rictor (mTORC2) was not overexpressed in Hodgkin-lymphoma biopsies and cell lines. Rapamycin inhibited proliferation and induced apoptosis in Hodgkin-lymphoma cells both in vitro and in vivo, moreover, it increased the apoptotic effect of chemotherapeutic agents. CONCLUSIONS: Targeting mTOR activity may be a potential therapeutic tool in lymphomas. The presence of mTOR activity probably indicates that the inclusion of mTOR inhibition in the therapy of Hodgkin-lymphomas may be feasible and beneficial, especially when standard protocols are ineffective, and it may also allow dose reduction in order to decrease late treatment toxicity. Most likely, the combination of mTOR inhibitors with other agents will offer the highest efficiency for achieving the best clinical response

    Relationship between the Mediterranean dietary pattern and musculoskeletal health in children, adolescents, and adults: systematic review and evidence map

    Get PDF
    Context: An understanding of the modifiable effects of diet on bone and skeletal muscle mass and strength over the life course will help inform strategies to reduce age-related fracture risk. The Mediterranean diet is rich in nutrients that may be important for optimal musculoskeletal health. Objective: The aim of this systematic review was to investigate the relationship between a Mediterranean diet and musculoskeletal outcomes (fracture, bone density, osteoporosis, sarcopenia) in any age group. Data Sources: Ten electronic databases were searched. Study Selection: Randomized controlled trials and prospective cohort studies that investigated a traditional Mediterranean diet, published in any language, were eligible. Studies using other designs or other definitions of the Mediterranean diet were collated separately in an evidence map. Data Extraction: Details on study design, methods, population, dietary intervention or exposure, length of follow-up, and effect on or association with musculoskeletal outcomes were extracted. Results: The search yielded 1738 references. Data from eligible randomized controlled trials (n = 0) and prospective cohort studies (n = 3) were synthesized narratively by outcome for the systematic review. Two of these studies reported on hip fracture incidence, but results were contradictory. A third study found no association between the Mediterranean diet and sarcopenia incidence. Conclusions: Overall, the systematic review and evidence map demonstrate a lack of research to understand the relationship between the Mediterranean diet and musculoskeletal health in all ages. Systematic Review Registration: PROSPERO registration number IDCRD42016037038

    Specific Roles of Akt iso Forms in Apoptosis and Axon Growth Regulation in Neurons

    Get PDF
    Akt is a member of the AGC kinase family and consists of three isoforms. As one of the major regulators of the class I PI3 kinase pathway, it has a key role in the control of cell metabolism, growth, and survival. Although it has been extensively studied in the nervous system, we have only a faint knowledge of the specific role of each isoform in differentiated neurons. Here, we have used both cortical and hippocampal neuronal cultures to analyse their function. We characterized the expression and function of Akt isoforms, and some of their substrates along different stages of neuronal development using a specific shRNA approach to elucidate the involvement of each isoform in neuron viability, axon development, and cell signalling. Our results suggest that three Akt isoforms show substantial compensation in many processes. However, the disruption of Akt2 and Akt3 significantly reduced neuron viability and axon length. These changes correlated with a tendency to increase in active caspase 3 and a decrease in the phosphorylation of some elements of the mTORC1 pathway. Indeed, the decrease of Akt2 and more evident the inhibition of Akt3 reduced the expression and phosphorylation of S6. All these data indicate that Akt2 and Akt3 specifically regulate some aspects of apoptosis and cell growth in cultured neurons and may contribute to the understanding of mechanisms of neuron death and pathologies that show deregulated growth

    Mechanisms of TSC-mediated Control of Synapse Assembly and Axon Guidance

    Get PDF
    Tuberous sclerosis complex is a dominant genetic disorder produced by mutations in either of two tumor suppressor genes, TSC1 and TSC2; it is characterized by hamartomatous tumors, and is associated with severe neurological and behavioral disturbances. Mutations in TSC1 or TSC2 deregulate a conserved growth control pathway that includes Ras homolog enriched in brain (Rheb) and Target of Rapamycin (TOR). To understand the function of this pathway in neural development, we have examined the contributions of multiple components of this pathway in both neuromuscular junction assembly and photoreceptor axon guidance in Drosophila. Expression of Rheb in the motoneuron, but not the muscle of the larval neuromuscular junction produced synaptic overgrowth and enhanced synaptic function, while reductions in Rheb function compromised synapse development. Synapse growth produced by Rheb is insensitive to rapamycin, an inhibitor of Tor complex 1, and requires wishful thinking, a bone morphogenetic protein receptor critical for functional synapse expansion. In the visual system, loss of Tsc1 in the developing retina disrupted axon guidance independently of cellular growth. Inhibiting Tor complex 1 with rapamycin or eliminating the Tor complex 1 effector, S6 kinase (S6k), did not rescue axon guidance abnormalities of Tsc1 mosaics, while reductions in Tor function suppressed those phenotypes. These findings show that Tsc-mediated control of axon guidance and synapse assembly occurs via growth-independent signaling mechanisms, and suggest that Tor complex 2, a regulator of actin organization, is critical in these aspects of neuronal development

    Gabapentin for chronic pelvic pain in women (GaPP2):a multicentre, randomised, double-blind, placebo-controlled trial

    Get PDF
    BackgroundChronic pelvic pain affects 2–24% of women worldwide and evidence for medical treatments is scarce. Gabapentin is effective in treating some chronic pain conditions. We aimed to measure the efficacy and safety of gabapentin in women with chronic pelvic pain and no obvious pelvic pathology.MethodsWe performed a multicentre, randomised, double-blind, placebo-controlled randomised trial in 39 UK hospital centres. Eligible participants were women with chronic pelvic pain (with or without dysmenorrhoea or dyspareunia) of at least 3 months duration. Inclusion criteria were 18–50 years of age, use or willingness to use contraception to avoid pregnancy, and no obvious pelvic pathology at laparoscopy, which must have taken place at least 2 weeks before consent but less than 36 months previously. Participants were randomly assigned in a 1:1 ratio to receive gabapentin (titrated to a maximum dose of 2700 mg daily) or matching placebo for 16 weeks. The online randomisation system minimised allocations by presence or absence of dysmenorrhoea, psychological distress, current use of hormonal contraceptives, and hospital centre. The appearance, route, and administration of the assigned intervention were identical in both groups. Patients, clinicians, and research staff were unaware of the trial group assignments throughout the trial. Participants were unmasked once they had provided all outcome data at week 16–17, or sooner if a serious adverse event requiring knowledge of the study drug occurred. The dual primary outcome measures were worst and average pain scores assessed separately on a numerical rating scale in weeks 13–16 after randomisation, in the intention-to-treat population. Self-reported adverse events were assessed according to intention-to-treat principles. This trial is registered with the ISRCTN registry, ISCRTN77451762.FindingsParticipants were screened between Nov 30, 2015, and March 6, 2019, and 306 were randomly assigned (153 to gabapentin and 153 to placebo). There were no significant between-group differences in both worst and average numerical rating scale (NRS) pain scores at 13–16 weeks after randomisation. The mean worst NRS pain score was 7·1 (standard deviation [SD] 2·6) in the gabapentin group and 7·4 (SD 2·2) in the placebo group. Mean change from baseline was −1·4 (SD 2·3) in the gabapentin group and −1·2 (SD 2·1) in the placebo group (adjusted mean difference −0·20 [97·5% CI −0·81 to 0·42]; p=0·47). The mean average NRS pain score was 4·3 (SD 2·3) in the gabapentin group and 4·5 (SD 2·2) in the placebo group. Mean change from baseline was −1·1 (SD 2·0) in the gabapentin group and −0·9 (SD 1·8) in the placebo group (adjusted mean difference −0·18 [97·5% CI −0·71 to 0·35]; p=0·45). More women had a serious adverse event in the gabapentin group than in the placebo group (10 [7%] of 153 in the gabapentin group compared with 3 [2%] of 153 in the placebo group; p=0·04). Dizziness, drowsiness, and visual disturbances were more common in the gabapentin group.InterpretationThis study was adequately powered, but treatment with gabapentin did not result in significantly lower pain scores in women with chronic pelvic pain, and was associated with higher rates of side-effects than placebo. Given the increasing reports of abuse and evidence of potential harms associated with gabapentin use, it is important that clinicians consider alternative treatment options to off-label gabapentin for the management of chronic pelvic pain and no obvious pelvic pathology.FundingNational Institute for Health Research

    Diet and Energy-Sensing Inputs Affect TorC1-Mediated Axon Misrouting but Not TorC2-Directed Synapse Growth in a Drosophila Model of Tuberous Sclerosis

    Get PDF
    The Target of Rapamycin (TOR) growth regulatory system is influenced by a number of different inputs, including growth factor signaling, nutrient availability, and cellular energy levels. While the effects of TOR on cell and organismal growth have been well characterized, this pathway also has profound effects on neural development and behavior. Hyperactivation of the TOR pathway by mutations in the upstream TOR inhibitors TSC1 (tuberous sclerosis complex 1) or TSC2 promotes benign tumors and neurological and behavioral deficits, a syndrome known as tuberous sclerosis (TS). In Drosophila, neuron-specific overexpression of Rheb, the direct downstream target inhibited by Tsc1/Tsc2, produced significant synapse overgrowth, axon misrouting, and phototaxis deficits. To understand how misregulation of Tor signaling affects neural and behavioral development, we examined the influence of growth factor, nutrient, and energy sensing inputs on these neurodevelopmental phenotypes. Neural expression of Pi3K, a principal mediator of growth factor inputs to Tor, caused synapse overgrowth similar to Rheb, but did not disrupt axon guidance or phototaxis. Dietary restriction rescued Rheb-mediated behavioral and axon guidance deficits, as did overexpression of AMPK, a component of the cellular energy sensing pathway, but neither was able to rescue synapse overgrowth. While axon guidance and behavioral phenotypes were affected by altering the function of a Tor complex 1 (TorC1) component, Raptor, or a TORC1 downstream element (S6k), synapse overgrowth was only suppressed by reducing the function of Tor complex 2 (TorC2) components (Rictor, Sin1). These findings demonstrate that different inputs to Tor signaling have distinct activities in nervous system development, and that Tor provides an important connection between nutrient-energy sensing systems and patterning of the nervous system
    corecore