327 research outputs found
Queries with negation and inequalities over lightweight ontologies
While the problem of answering positive existential queries, in particular, conjunctive queries (CQs) and unions of CQs, over description logic ontologies has been studied extensively, there have been few attempts to analyse queries with negated atoms. Our aim is to sharpen the complexity landscape of the problem of answering CQs with negation and inequalities in lightweight description logics of the DL-Lite and EL families. We begin by considering queries with safe negation and show that there is a surprisingly significant increase in the complexity from AC0 to undecidability (even if the ontology and query are fixed and only the data is regarded as input). We also investigate the problem of answering queries with inequalities and show that answering a single CQ with one inequality over DL-Lite with role inclusions is undecidable. In the light of our undecidability results, we explore syntactic restrictions to attain efficient query answering with negated atoms. In particular, we identify a novel class of local CQs with inequalities, for which query answering over DL-Lite is decidable
Comparative absorption of curcumin formulations
BACKGROUND: The potential health benefits of curcumin are limited by its poor solubility, low absorption from the gut, rapid metabolism and rapid systemic elimination. The purpose of this study was the comparative measurement of the increases in levels of curcuminoids (curcumin, demethoxycurcumin, bisdemethoxycurcumin) and the metabolite tetrahydrocurcumin after oral administration of three different curcumin formulations in comparison to unformulated standard. METHODS: The relative absorption of a curcumin phytosome formulation (CP), a formulation with volatile oils of turmeric rhizome (CTR) and a formulation of curcumin with a combination of hydrophilic carrier, cellulosic derivatives and natural antioxidants (CHC) in comparison to a standardized curcumin mixture (CS) was investigated in a randomized, double-blind, crossover human study in healthy volunteers. Samples were analyzed by HPLC-MS/MS. RESULTS: Total curcuminoids appearance in the blood was 1.3-fold higher for CTR and 7.9-fold higher for CP in comparison to unformulated CS. CHC showed a 45.9-fold higher absorption over CS and significantly improved absorption over CP (5.8-fold) and CTR (34.9-fold, all p < 0.001). CONCLUSION: A formulation of curcumin with a combination of hydrophilic carrier, cellulosic derivatives and natural antioxidants significantly increases curcuminoid appearance in the blood in comparison to unformulated standard curcumin CS, CTR and CP
Decoding Human Hematopoietic Stem Cell Self-Renewal
Purpose of Review: Hematopoietic stem cells (HSCs) maintain blood and immune cell homeostasis by balancing quiescence, self-renewal, and differentiation. HSCs can be used in lifesaving transplantation treatments to create a healthy hematopoietic system in patients suffering from malignant or inherited blood diseases. However, lack of matching bone marrow donors, and the low quantity of HSCs in a single cord blood graft, are limitations for successful transplantation. The enormous regenerative potential of HSCs has raised the hope that HSC self-renewal could be recapitulated in culture to achieve robust expansion of HSCs for therapeutic use. Yet, when HSCs are cultured ex vivo their function becomes compromised, limiting successful expansion. Recent Findings: After decades of efforts to expand human HSCs ex vivo that resulted in minimal increase in transplantable units, recent studies have helped define culture conditions that can increase functional HSCs. These studies have provided new insights into how HSC stemness can be controlled from the nucleus by transcriptional, posttranscriptional and epigenetic regulators, or by improving the HSC microenvironment using 3D scaffolds, niche cells, or signaling molecules that mimic specific aspects of human HSC niche. Recent studies have also highlighted the importance of mitigating culture induced cellular stress and balancing mitochondrial, endoplasmic reticulum, and lysosomal functions. These discoveries have provided better markers for functional human HSCs and new insights into how HSC self-renewal and engraftment ability may be controlled ex vivo. Summary: Uncovering the mechanisms that control the human HSC self-renewal process may help improve the ex vivo expansion of HSCs for clinical purposes
Towards Efficient Reasoning under Guarded-based Disjunctive Existential Rules
International audienceThe complete picture of the complexity of answering (unions of) conjunctive queries under the main guarded-based classes of disjunc- tive existential rules has been recently settled. It has been shown that the problem is very hard, namely 2ExpTime-complete, even for fixed sets of rules expressed in lightweight formalisms. This gives rise to the question whether its complexity can be reduced by restricting the query language. Several subclasses of conjunctive queries have been proposed with the aim of reducing the complexity of classical database problems such as query evaluation and query containment. Three of the most prominent subclasses of this kind are queries of bounded hypertree-width, queries of bounded treewidth and acyclic queries. The central objective of the present paper is to understand whether the above query languages have a positive impact on the complexity of query answering under the main guarded-based classes of disjunctive existential rules. We show that (unions of) conjunctive queries of bounded hypertree- width and of bounded treewidth do not reduce the complexity of our problem, even if we focus on predicates of bounded arity, or on fixed sets of disjunctive existential rules. Regarding acyclic queries, although our problem remains 2ExpTime-complete in general, in some relevant set- tings the complexity reduces to ExpTime-complete; in fact, this requires to bound the arity of the predicates, and for some expressive guarded- based formalisms, to fix the set of rules
Josephson effect at finite temperature along the BCS-BEC crossover
The Josephson current-phase characteristics, that arise when a supercurrent flows across two fermionic superfluids separated by a potential barrier, can be controlled by varying either the interparticle coupling or the temperature. While the coupling dependence has been addressed in detail both theoretically and experimentally for an attractive Fermi gas undergoing the BCS-BEC crossover, a corresponding study of the temperature dependence of the Josephson characteristics is still lacking in this context. Here, we investigate the combined coupling and temperature dependence of the Josephson characteristics in a systematic way for a wide set of barriers, within ranges of height and width that can be experimentally explored. Our study smoothly connects the two limiting cases, of nonoverlapping composite bosons at low temperature described by the Gross-Piatevskii equation, and of strongly overlapping Cooper pairs near the critical temperature described by the Ginzburg-Landau equation. In this way, we are able to explore several interesting effects related to how the current-phase characteristics evolve along the BCS-BEC crossover as a function of temperature and of barrier shape. These effects include the coherence length outside the barrier and the pair penetration length inside the barrier (which is related to the proximity effect), as well as the temperature evolution of the Landau criterion in the limit of a vanishingly small barrier. A comparison is also presented between the available experimental data for the critical current and our theoretical results over a wide range of couplings along the BCS-BEC crossover
Josephson current flowing through a nontrivial geometry: Role of pairing fluctuations across the BCS-BEC crossover
A realistic description of the Josephson effect at finite temperature with ultra-cold Fermi gases embedded in nontrivial geometrical constraints (typically, a trap plus a barrier) requires appropriate consideration of pairing fluctuations that arise in inhomogeneous environments. Here, we apply the theoretical approach developed in the companion article, where the inclusion of pairing fluctuations beyond mean field across the BCS-BEC crossover at finite temperature is combined with a detailed description of the gap parameter in a nontrivial geometry. In this way, we are able to account for the
experimental results on the Josephson critical current, reported both at low temperature for various couplings across the BCS-BEC crossover and as a function of temperature at unitarity. Besides validating the theoretical approach of the companion article, our numerical results reveal generic
features of the Josephson effect which may not readily emerge from an analysis of corresponding experiments with condensed-matter samples owing to the unique intrinsic flexibility of experiments with ultra-cold gases
Critical current throughout the BCS-BEC crossover with the inclusion of pairing fluctuations
The present work aims at providing a systematic analysis of the current density versus momentum characteristics for a fermionic superfluid throughout the BCS-BEC crossover, even in the fully homogeneous case. At low
temperatures, where pairing fluctuations are not strong enough to invalidate a quasiparticle approach, a sharp
threshold for the inception of a back-flow current is found, which sets the onset of dissipation and identifies the
critical momentum according to Landau. This momentum is seen to smoothly evolve from the BCS to the BEC
regimes, whereby a single expression for the single-particle current density that includes pairing fluctuations
enables us to incorporate on equal footing two quite distinct dissipative mechanisms, namely, pair breaking
and phonon excitations in the two sides of the BCS-BEC crossover, respectively. At finite temperature, where
thermal fluctuations broaden the excitation spectrum and make the dissipative (kinetic and thermal) mechanisms
intertwined with each other, an alternative criterion due to Bardeen is instead employed to signal the loss of
superfluid behavior. In this way, detailed comparison with available experimental data in linear and annular
geometries is significantly improved with respect to previous approaches, thereby demonstrating the crucial role
played by quantum fluctuations in renormalizing the single-particle excitation spectrum
Insulin Glargine in the Intensive Care Unit: A Model-Based Clinical Trial Design
Online 4 Oct 2012Introduction: Current succesful AGC (Accurate Glycemic Control) protocols require extra clinical effort and are impractical in less acute wards where patients are still susceptible to stress-induced hyperglycemia. Long-acting insulin Glargine has the potential to be used in a low effort controller. However, potential variability in efficacy and length of action, prevent direct in-hospital use in an AGC framework for less acute wards.
Method: Clinically validated virtual trials based on data from stable ICU patients from the SPRINT cohort who would be transferred to such an approach are used to develop a 24-hour AGC protocol robust to different Glargine potencies (1.0x, 1.5x and 2.0x regular insulin) and initial dose sizes (dose = total insulin over prior 12, 18 and 24 hours). Glycemic control in this period is provided only by varying nutritional inputs. Performance is assessed as %BG in the 4.0-8.0mmol/L band and safety by %BG<4.0mmol/L.
Results: The final protocol consisted of Glargine bolus size equal to insulin over the previous 18 hours. Compared to SPRINT there was a 6.9% - 9.5% absolute decrease in mild hypoglycemia (%BG<4.0mmol/L) and up to a 6.2% increase in %BG between 4.0 and 8.0mmol/L. When the efficacy is known (1.5x assumed) there were reductions of: 27% BG measurements, 59% insulin boluses, 67% nutrition changes, and 6.3% absolute in mild hypoglycemia.
Conclusion: A robust 24-48 clinical trial has been designed to safely investigate the efficacy and kinetics of Glargine as a first step towards developing a Glargine-based protocol for less acute wards. Ensuring robustness to variability in Glargine efficacy significantly affects the performance and safety that can be obtained
- …
