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Abstract. The complete picture of the complexity of answering (unions
of) conjunctive queries under the main guarded-based classes of disjunc-
tive existential rules has been recently settled. It has been shown that the
problem is very hard, namely 2ExpTime-complete, even for fixed sets of
rules expressed in lightweight formalisms. This gives rise to the question
whether its complexity can be reduced by restricting the query language.
Several subclasses of conjunctive queries have been proposed with the
aim of reducing the complexity of classical database problems such as
query evaluation and query containment. Three of the most prominent
subclasses of this kind are queries of bounded hypertree-width, queries
of bounded treewidth and acyclic queries. The central objective of the
present paper is to understand whether the above query languages have
a positive impact on the complexity of query answering under the main
guarded-based classes of disjunctive existential rules.

We show that (unions of) conjunctive queries of bounded hypertree-
width and of bounded treewidth do not reduce the complexity of our
problem, even if we focus on predicates of bounded arity, or on fixed sets
of disjunctive existential rules. Regarding acyclic queries, although our
problem remains 2ExpTime-complete in general, in some relevant set-
tings the complexity reduces to ExpTime-complete; in fact, this requires
to bound the arity of the predicates, and for some expressive guarded-
based formalisms, to fix the set of rules.

1 Introduction

Rule-based languages lie at the core of several areas of central importance to arti-
ficial intelligence and databases, such as knowledge representation and reasoning,
data exchange and integration, and web data extraction. A prominent rule-based
formalism, originally intended for expressing complex recursive queries over rela-
tional databases, is Datalog, i.e., function-free first-order Horn logic. As already
criticized in [28], the main weakness of this language for representing knowledge
is its inability to infer the existence of new objects which are not explicitly stated
in the extensional data set.



Existential rules, a.k.a. tuple-generating dependencies (TGDs) and Datalog±

rules, overcome this limitation by extending Datalog with existential quantifica-
tion in rule-heads; see, e.g., [6, 12–14, 26, 27]. More precisely, existential rules are
implications among conjunctions of atoms, and they essentially say that some
tuples in a relational instance I imply the presence of some other tuples in I

(hence the name tuple-generating dependencies). Unfortunately, the addition of
existential quantifiers immediately leads to undecidability of conjunctive query
answering [10, 12], which is the main reasoning service under existential rules.
Conjunctive queries (CQs), which form one of the most commonly used language
for querying relational databases, are assertions of the form ∃Yϕ(X,Y), where
ϕ is a conjunction of atoms, and correspond to the select-project-join fragment
of relational algebra [1]. The answer to a CQ w.r.t. a database D and a set Σ
of existential rules consists of all the tuples t of constants such that ∃Yϕ(t,Y)
evaluates to true in every model of (D ∧Σ).

Several concrete languages which ensure the decidability of CQ answering
have been proposed over the last five years; see, e.g., [6, 12, 14, 18, 23, 25–27].
Nevertheless, existential rules are not expressive enough for nondeterministic
reasoning; for example, the statement “each parent of a father is the grandparent
of a boy or a girl” is not expressible via existential rules. Such a statement can
be expressed using the rules

∀X∀Y parentOf (X,Y ) ∧ isfather(Y ) → ∃Z grandparentOf (X,Z)

∀X∀Y grandparentOf (X,Y ) → boy(Y ) ∨ girl(Y ).

Obviously, to represent such kind of disjunctive knowledge, we need to extend
the existing classes of existential rules with disjunction in the head of rules.
Enriching existential rules with disjunction yields the formalism of disjunctive
existential rules, a.k.a. disjunctive TGDs (DTGDs) [17]; henceforth, for brevity,
we adopt the terms (D)TGDs.

Guarded-based DTGDs. Guardedness is a well-known restriction which
guarantees good model-theoretic and computational properties for first-order
sentences [3]. Recently, inspired by guardedness, the class of guarded TGDs,
that is, rules with a guard atom in the left-hand side which contains (or guards)
all the universally quantified variables, has been defined [12]. Several extensions
and restrictions of guarded TGDs have been proposed [6, 13]; we refer to all
those formalisms by the term guarded-based TGDs, and more details will be
given in Section 2. Guarded-based TGDs can be naturally extended to DTGDs.
For example, the above set of rules is guarded since the atoms parentOf (X,Y )
and grandparentOf (X,Y ) are guards.

The complexity picture for query answering under the main guarded-based
classes of DTGDs has been recently completed for arbitrary CQs [11]. Moreover,
the complexity of answering atomic CQs, i.e., CQs consisting of a single atom, has
been also investigated [2, 22]. However, the complexity picture of the problem
restricted on some important subclasses of CQs, namely queries of bounded
hypertree-width [20], queries of bounded treewidth [16], and acyclic queries [19],
is still foggy, and there are several challenging open questions.
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Research Challenges. The above subclasses of CQs have been proposed
with the aim of reducing the complexity of several key decision problems on
CQs such as evaluation of (Boolean) queries and query containment; in fact,
those problems are NP-complete in general, but become tractable if restricted
to one of the above subclasses [16, 19, 20]. The main objective of this work is to
understand whether the subclasses of CQs in question have an analogous positive
impact on query answering under the main guarded-based classes of DTGDs.

Although we know that our problem is unlikely to become tractable (implicit
in [15]), we would like to understand whether its complexity is reduced. To
achieve this, we focus on the following fundamental questions: (1) What is the
exact complexity of answering queries which fall in one of the above subclasses of
CQs under the main guarded-based classes of DTGDs?; (2) How is it affected if
we consider predicates of bounded arity, or a fixed set of DTGDs, or a fixed set of
DTGDs and a fixed query (a.k.a. the data complexity, where only the database
is part of the input)?; and (3) How is it affected if we consider unions of CQs,
i.e., disjunctions of a finite number of CQs? We provide answers to all these
questions. This allows us to close the picture of the complexity of our problem,
and come up with some general and insightful conclusions.

Our Findings. Our findings can be summarized as follows:

1. We show that (unions of) CQs of bounded hypertree-width and of bounded
treewidth do not reduce the complexity of the problem under investigation.
In particular, we show that for all the guarded-based classed of DTGDs
in question, the problem remains 2ExpTime-complete, even if we focus on
predicates of bounded arity, or on fixed sets of DTGDs, while the data com-
plexity remains coNP-complete. The data complexity results are inherited
from existing works. However, all the other results are obtained by estab-
lishing a remarkably strong lower bound, namely query answering under a
fixed set of DTGDs expressed in a lightweight fragment of guarded DTGDs,
that is, constant-free rules with just one atom in the left-hand side without
repeated variables, is 2ExpTime-hard.

2. Regarding acyclic (unions of) CQs, we show that for all the classes of DTGDs
under consideration, the problem remains 2ExpTime-complete in general,
and coNP-complete in data complexity. Again, the data complexity is inher-
ited from existing results, while the 2ExpTime-completeness is obtained by
establishing a non-trivial lower bound. However, in some relevant cases the
acyclicity of the query reduces the complexity of our problem to ExpTime-
complete. In fact, this requires to focus on predicates of bounded arity, and
for some expressive classes of DTGDs, on fixed sets of DTGDs. The up-
per bounds are obtained by exploiting results on the guarded fragment of
first-order logic, while the lower bounds required a non-trivial proof.

To sum up, queries of bounded hypertree-width and of bounded treewidth,
as well as acyclic queries, do not have the expected positive impact on query
answering under the main guarded-based classes of DTGDs. However, a positive
impact can be observed on some relevant settings of our problem if we consider
acyclic queries.
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2 Preliminaries

General. Let C, N and V be pairwise disjoint infinite countable sets of con-
stants, (labeled) nulls and variables, respectively. We denote by X sequences (or
sets) of variables X1, . . . , Xk. Let [n] = {1, . . . , n}, for n > 1. A term is a con-
stant, null or variable. An atom has the form p(t1, . . . , tn), where p is an n-ary
predicate, and t1, . . . , tn are terms. For an atom a, dom(a) and var(a) are the
set of its terms and the set of its variables, respectively; those notations extend
to sets of atoms. Usually conjunctions and disjunctions of atoms are treated as
sets of atoms. An instance I is a (possibly infinite) set of atoms of the form p(t),
where t is a tuple of constants and nulls. A database D is a finite instance with
only constants. Whenever an instance I is treated as a logical formula, is the
formula ∃X (

∧

a∈I I), where X contains a variable for each null in I.

Conjunctive Queries. A conjunctive query (CQ) q is a sentence ∃Xϕ(X),
where ϕ is a conjunction of atoms. If q does not have free variables, then it
is called Boolean. For brevity, we consider only Boolean CQs; however, all the
results of the paper can be easily extended to non-Boolean CQs. A union of
conjunctive queries (UCQ) is a disjunction of a finite number of CQs. By abuse of
notation, sometimes we consider a UCQ as set of CQs. A CQ q = ∃Xϕ(X) has a
positive answer over an instance I, written I |= q, if there exists a homomorphism
h such that h(ϕ(X)) ⊆ I. The answer to a UCQ Q over I is positive, written
I |= Q, if there exists q ∈ Q such that I |= q. A key subclass of CQs is the class of
CQs of bounded treewidth (BTWCQs) [16], i.e., the treewidth of their hypergraph
is bounded. The hypergraph of a CQ q, denoted H(q), is a hypergraph ⟨V,H⟩,
where V = dom(q), and, for each a ∈ q, there exists a hyperedge h ∈ H such that
h = dom(a). The treewidth of q is defined as the treewidth of its hypergraph
H(q), that is, the treewidth of the Gaifman graph GH(q) of H(q). The Gaifman
graph ofH(q) is the graph ⟨V,E⟩, where V is the node set ofH(q), and (v, u) ∈ E

iff H(q) has a hyperedge h such that {v, u} ⊆ h. Another important subclass of
CQs is the class of acyclic CQs (ACQs) [16]. A CQ is acyclic if H(q) is acyclic,
i.e., it can be reduced to the empty hypergraph by iteratively eliminating some
non-maximal hyperedge, or some vertex contained in at most one hyperedge.

Disjunctive Tuple-Generating Dependencies. A disjunctive TGD (or
simply DTGD) σ is a first-order formula ∀X (ϕ(X) →

∨n

i=1 ∃Yi ψi(X,Yi)),
where n > 1, X ∪ Y ⊂ V, and ϕ,ψ1, . . . , ψn are conjunctions of atoms. The
formula ϕ is called the body of σ, denoted body(σ), while

∨n

i=1 ψi is the head
of σ, denoted head(σ). The set of variables var(body(σ)) ∩ var(head(σ)) ⊆ X

is known as the frontier of σ, denoted frontier(σ). If n = 1, then σ is called
tuple-generating dependency (TGD). The schema of a set Σ of DTGDs, denoted
sch(Σ), is the set of all predicates occurring in Σ. For brevity, we will omit the
universal quantifiers, and use the comma (instead of ∧). An instance I satisfies σ,
written I |= σ, if whenever there exists a homomorphism h such that h(ϕ(X)) ⊆
I, then there exists i ∈ [n] and h′ ⊇ h such that h′(ψi(X,Yi)) ⊆ I; I satisfies
a set Σ of DTGDs, denoted I |= Σ, if I |= σ, for each σ ∈ Σ. A disjunctive
inclusion dependency (DID) is a constant-free DTGD with only one body-atom,
the head is a disjunction of atoms, and there are no repeated variables in the body
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or in the head. A DTGD σ is linear if it has only one body-atom. A DTGD σ is
guarded if there exists a ∈ body(σ), called guard, which contains all the variables
in body(σ). Weakly-guarded DTGDs extend guarded DTGDs by requiring only
the body-variables that appear at affected positions, i.e., positions at which a
null value may appear during the disjunctive chase (defined below), to appear
in the guard; see [12]. A DTGD σ is frontier-guarded if there exists a ∈ body(σ)
which contains all the variables of frontier(σ). Weakly-frontier-guarded DTGDs
are defined analogously.

Query Answering. The models of a database D and a set Σ of DTGDs,
denoted mods(D,Σ), is the set of instances {I | I ⊇ D and I |= Σ}. The answer
to a CQ q w.r.t. D and Σ is positive, denoted D ∪ Σ |= q, if I |= q, for each
I ∈ mods(D,Σ). The answer to a UCQ w.r.t. D and Σ is defined analogously.
Our problem is defined as follows: Given a CQ q, a database D, and a set Σ
of DTGDs, decide whether D ∪ Σ |= q. If q is a BTWCQ (resp., ACQ), then
the above problem is called BTWCQ (resp., ACQ) answering. The problem
BTWUCQ (resp., AUCQ) answering is defined analogously. The data complexity
is calculated taking only the database as input. For the combined complexity, the
query and set of DTGDs count as part of the input as well.

Disjunctive Chase. Consider an instance I, and a DTGD σ : ϕ(X) →
∨n

i=1 ∃Yψi(X,Y). We say that σ is applicable to I if there exists a homomor-
phism h such that h(ϕ(X)) ⊆ I, and the result of applying σ to I with h is
the set {I1, . . . , In}, where Ii = I ∪ h′(ψi(X,Y)), for each i ∈ [n], and h′ ⊇ h

is such that h′(Y ) is a “fresh” null not occurring in I, for each Y ∈ Y. For
such an application of a DTGD, which defines a single DTGD chase step, we
write I⟨σ, h⟩{I1, . . . , In}. A disjunctive chase tree of a database D and a set Σ of
DTGDs is a (possibly infinite) tree such that the root is D, and for every node
I, assuming that {I1, . . . , In} are the children of I, there exists σ ∈ Σ and a
homomorphism h such that I⟨σ, h⟩{I1, . . . , In}. The disjunctive chase algorithm
for D and Σ consists of an exhaustive application of DTGD chase steps in a
fair fashion, which leads to a disjunctive chase tree T of D and Σ; we denote by
chase(D,Σ) the set {I | I is a leaf of T}. It is well-known that, given a UCQ Q,
D ∪Σ |= Q iff I |= Q, for each I ∈ chase(D,Σ).

The Guarded Fragment of First-Order Logic. The guarded fragment
(GFO) has been introduced in [3]. The set of GFO formulas over a schema R is
the smallest set (1) containing all atomic R-formulas and equalities; (2) closed
under the logical connectives ¬, ∧, ∨, →; and (3) if a is an R-atom containing
all the variables of X∪Y, and ϕ is a GFO formula with free variables contained
in (X ∪ Y), then ∀X(a → ϕ) and ∃X(a ∧ ϕ) are GFO formulas. The loosely
guarded fragment (LGFO) is a generalization of GFO where the quantifiers are
guarded by conjunctions of atomic formulas; for details see, e.g., [24].

Alternation. An alternating Turing machine is a tuple M = (S,Λ, δ, s0),
where S = S∀⊎S∃⊎{sa}⊎{sr} is a finite set of states partitioned into universal
states, existential states, an accepting state and a rejecting state, Λ is the tape
alphabet, δ ⊆ (S × Λ) × (S × Λ × {−1, 0,+1}) is the transition relation, and
s0 ∈ S is the initial state. We assume that Λ contains a special blank symbol ⊔.

5



Combined Bounded Fixed Data

Complexity Arity Rules Complexity

DID 2ExpTime 2ExpTime 2ExpTime coNP

LB: Thm. 1 LB: [15, Thm. 4.5]

L/G 2ExpTime 2ExpTime 2ExpTime coNP

F-G 2ExpTime 2ExpTime 2ExpTime coNP

UB: [11, Thm. 7]

W-G 2ExpTime 2ExpTime 2ExpTime ExpTime

LB: [12, Thm. 4.1]

W-F-G 2ExpTime 2ExpTime 2ExpTime ExpTime

UB: [11, Thm. 1] UB: [11, Thm. 7]

Table 1. Complexity of BTW(U)CQ answering. Each row corresponds to a class of
DTGDs; substitute L for linear, G for guarded, F for frontier, and W for weakly. UB
and LB stand for upper and lower bound. The missing references for the upper (lower)
bounds are inherited from the first lower-left (upper-right) cell with a reference.

3 Bounded Treewidth Queries

In this section, we focus on answering (U)CQs of bounded treewidth under our
respective classes of DTGDs. Table 1 gives the complete picture of the complex-
ity of our problem. As you can observe, the data complexity for all the classes of
DTGDs under consideration is obtained from existing results. More precisely, the
coNP-hardness for DIDs is obtained from [15, Theorem 4.5], where it is shown
that CQ answering under a single DID of the form p1(X) → p2(X) ∨ p3(X),
is already coNP-hard, even if the input query is fixed (and thus of bounded
treewidth). The coNP upper bound for frontier-guarded DTGDs has been es-
tablished in [11, Theorem 7] by a reduction to UCQ answering under GFO sen-
tences. The ExpTime-hardness for weakly-guarded DTGDs is inherited from [12,
Theorem 4.1], where it is shown that CQ answering under a fixed set of weakly-
guarded TGDs is ExpTime-hard, even if the input query is a single atom. The
ExpTime upper bound for weakly-frontier-guarded DTGDs has be shown in [11,
Theorem 7] again by a reduction to UCQ answering under GFO.

Although the data complexity of our problem can be settled by exploiting
known results, the picture for all the other cases is still foggy. The best known
upper bound is the 2ExpTime upper bound for answering arbitrary UCQs under
weakly-frontier-guarded DTGDs [11, Theorem 1], established by a reduction to
the satisfiability problem of the guarded negation fragment [9], an extension of
GFO. This result, combined with the fact that CQ answering under guarded
TGDs is 2ExpTime-hard in the combined complexity [12, Theorem 6.1], even
for atomic queries of the form ∃Xp(X) (and thus of bounded treewidth), closes
the combined complexity for (weakly-)(frontier-)guarded DTGDs. However, the
above lower bound for guarded DTGDs is not strong enough to complete the
complexity picture of our problem. We establish a strong lower bound which,
together with the above 2ExpTime upper bound, gives us the complete picture
of the complexity of the problem studied in this section.

Theorem 1. BTWCQ answering under fixed sets of DIDs is 2ExpTime-hard.
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Fig. 1. Representation of the computation tree of M in the proof of Theorem 1.

Proof (sketch). The proof is by a reduction from the non-acceptance problem of
an alternating exponential space Turing machine M = (S,Λ, δ, s0) on the empty
input. We assume that M uses exactly 2n tape cells, Λ = {0, 1,⊔}, the initial
configuration is existential, and every universal configuration is followed by two
existential configurations and vice versa. Our goal is to construct a database D,
a fixed set Σ of DIDs, and a BTWCQ q such that D ∪Σ |= q iff M rejects. The
general idea is to construct, by chasingD and Σ, all the trees which may encode a
possible computation tree of M ; in other words, each instance I ∈ chase(D,Σ)
will encode such a tree TI . More precisely, the initial configuration is stored
in the database D as the atom conf ∃(0, 1, c, c1, c2), where {c, c1, c2} ⊂ C are
constants which represent the initial configuration (c), and its two subsequent
configurations (c1 and c2) and 0 and 1 are auxiliary constants that will allow us
to have access to 0 and 1 without explicitly mention them in Σ. Then, starting
from the initial configuration, we construct a tree whose nodes are configurations,
i.e., atoms of the form conf x(0, 1, t, n1, n2), where x ∈ {∃, ∀}. Moreover, on each
configuration node v, which represents the configuration Cv of M , we attach a
configuration tree, that is, a full binary tree of depth n, and thus at its n-th
level there are exactly 2n nodes which represent the cells of the tape of M in
Cv. Furthermore, for each cell we guess its content (0, 1 or ⊔), and also whether
the cursor of M is at this cell, and if so, we attach a chain of length at most
|S|, which encodes the state of Cv. The above informal description is illustrated
in Figure 1. Finally, we construct a BTWCQ q such that, if I ∈ chase(D,Σ)
entails q, then TI is not a valid computation tree of M .

The above strong lower bound closes all the missing cases regarding the
complexity of our problem, and the next result follows:

Corollary 1. BTW(U)CQ answering under (weakly-)(frontier-)guarded DTGDs,
linear DTGDs and DIDs is 2ExpTime-complete in the combined complexity. The
same holds for predicates of bounded arity, and for fixed sets of DTGDs.

Another key class of queries is the class of CQs of bounded hypertree-width [20].
The hypertree-width is a measure of how close to acyclic a hypergraph is, analo-
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Combined Bounded Fixed Data

Complexity Arity Rules Complexity

DID 2ExpTime ExpTime ExpTime coNP

LB: Thm. 4 LB: Thm. 6 LB: [15, Thm. 4.5]

L/G 2ExpTime ExpTime ExpTime coNP

F-G 2ExpTime 2ExpTime ExpTime coNP

UB: [11, Thm. 1] UB: [11, Thm. 7]

LB: Thm. 5

W-G 2ExpTime ExpTime ExpTime ExpTime

UB: Thm. 2 LB: [12, Thm. 4.1]

W-F-G 2ExpTime 2ExpTime ExpTime ExpTime

UB: [11, Thm. 1] LB: Thm. 5 UB: Thm. 3 UB: [11, Thm. 7]

Table 2. Complexity of answering acyclic (U)CQs.

gous to treewidth for graphs. The hypertree-width of a CQ is less than or equal to
its treewidth. Since all the upper bounds in Table 1 hold for arbitrary (U)CQs,
we get that arbitrary (U)CQs, (U)CQs of bounded treewidth and (U)CQs of
bounded hypertree-width are indistinguishable w.r.t. to the complexity of query
answering under our DTGDs.

4 Acyclic Queries

In this section, we focus on answering (unions of) acyclic queries under our
respective classes of DTGDs. Table 2 gives the complete picture of the complexity
of our problem. Compared with Table 1, it is immediately apparent that we
can inherit from existing works the same results as for BTW(U)CQ answering,
namely the data complexity in all the cases, and the 2ExpTime upper bound
for answering arbitrary UCQs under weakly-frontier-guarded DTGDs. Therefore,
apart from the data complexity, several non-trivial cases are still missing. As you
can observe in Table 2, the combined and the data complexity do not change if
we restrict our selves to acyclic queries. However, the complexity decreases from
2ExpTime to ExpTime for the non-frontier classes of DTGDs, i.e., DIDs, linear
and (weakly-)guarded DTGDs, in the case of predicates of bounded arity, and
also for all the classes if we consider a fixed set of DTGDs. This is an interesting
finding as, in general, queries of bounded treewidth and acyclic queries behave
in the same way. Let us now proceed with our results.

4.1 Upper Bounds

We start this section by showing that answering acyclic queries under weakly-
guarded sets of DTGDs is in ExpTime in case of bounded arity. This is shown
by a reduction to satisfiability of LGFO. Let us briefly explain the reduction via
a simple example. Consider the database D = {s(a, a), p(a, b, c)} and the set Σ
consisting of

σ1 : t(X,Y ), p(Z,W,X), s(Z, V ) → ∃U p(Y, Z, U) ∨ s(Y, Z),
σ2 : p(X,Y, Z) → ∃W t(Z,W ).

8



Observe that the affected positions of sch(Σ), i.e., the positions where nulls may
appear during the construction of chase(D,Σ), are p[3], t[1] and t[2]. Clearly,
t(X,Y ) is the weak-guard for σ1 and p(X,Y, Z) the weak-guard for σ2. Notice
that σ2 is already a GFO (and thus an LGFO) sentence. Thus, we need to
convert σ1 into an LGFO sentence. This can be done by expanding the weak-
guard t(X,Y ) into a conjunction of atoms to guard the variables Z, V and W ,
and obtain the sentence Ψσ1

∀X∀Y ∀Z∀V ∀W
((

t̂(Z, V,X, Y ) ∧ t̂(Z,W,X, Y ) ∧ t̂(V,W,X, Y )
)

→
(p(Z,W,X) ∧ s(Z, V )) → ∃U (p(Y, Z, U) ∨ s(Y, Z))) .

It should not be forgotten to properly generate the atoms with the auxiliary
predicate t̂. Since the variables Z, V and W can be satisfied only with constants
of dom(D) = {a, b, c}, those atoms can be generated via the GFO sentence Ψt̂

∀X∀Y
(

t(X,Y ) → t̂(a, a,X, Y ) ∧ t̂(a, b,X, Y ) ∧ t̂(a, c,X, Y )∧
t̂(b, a,X, Y ) ∧ t̂(b, b,X, Y ) ∧ t̂(b, c,X, Y )∧

t̂(c, a,X, Y ) ∧ t̂(c, b,X, Y ) ∧ t̂(c, c,X, Y )
)

.

It is not difficult to see that, for every acyclic UCQ Q, D∪Σ |= Q iff the sentence
Ψ = (D∧Ψσ1

∧Ψt̂∧σ2∧¬Q) is unsatisfiable. Notice that Ψ does not immediately
fall into LGFO because of the query Q. However, since Q is acyclic, there exists
an equivalent UCQQ′ which falls in GFO [21]. Thus, Ψ ′ = (D∧Ψσ1

∧Ψt̂∧σ2∧¬Q
′)

falls in LGFO and is equivalent to Ψ . Let us clarify that, if the head of σ1 is a
disjunction of conjunctions (instead of atoms as in the above example), then Ψ ′

is “almost” loosely-guarded since the existentially quantified variables are not
necessarily guarded. However, as explicitly remarked in [24], the satisfiability
algorithm for LGFO sentences is general enough to also treat sentences which
are “almost” LGFO without increasing the complexity. From the above informal
discussion we get that:

Theorem 2. AUCQ answering under weakly-guarded sets of DTGDs is in Ex-

pTime in case of predicates of bounded arity.

The above machinery cannot be applied in the case of weakly-frontier-guarded
DTGDs since the variables that we need to guard may appear at affected po-
sitions. However, if we focus on fixed sets of DTGDs, then the complexity is
reduced to ExpTime. This is established by first reducing our problem to UCQ
answering under GFO sentences, and then exploit a result in [8], where the
problem of querying GFO is studied.

Theorem 3. AUCQ answering under fixed weakly-frontier-guarded sets of DT-
GDs is in ExpTime.

We believe that the results of this section can have a practical impact on other
important tasks, such as querying graph databases [5], or querying description
logic ontologies [4], where the attention is usually focussed on unary and binary
predicates.

9



4.2 Lower Bounds

We start this section by showing the following non-trivial lower bound:

Theorem 4. ACQ answering under DIDs is 2ExpTime-hard in combined com-
plexity.

Proof (sketch). We follow the same approach as in the proof of Theorem 1.
However, the way that a computation tree of the alternating Turing machine
M = (S,Λ, δ, s0) is represented in that proof is not useful since it will necessar-
ily lead to a cyclic query Q. This is exactly the non-trivial part of the proof,
i.e., to construct, by chasing D and Σ, all the possible trees which may encode a
computation tree of M in such a way that an acyclic query Q can be employed.
To this aim, the configurations of M are represented using atoms of the form
conf [s](b1, . . . , bn, a, h, t, p, n1, n2), where s ∈ S is the state of the encoded con-
figuration (and is part of the predicate), (b1, . . . , bn) ∈ {0, 1}n is an integer of
{0, . . . , 2n−1} in binary encoding which represents the index of the encoded cell,
h ∈ {0, 1} and h = 1 means that the cursor of M is at the encoded cell, and t, p,
n1 and n2 represent the current, the previous and the next two configurations,
respectively. More precisely, using a fixed number of DIDs, one can construct a
tree with nodes of the form conf 0[s](0, 1,⊔, 0

2n, 1n, 1, z1, z2, z3, z4); such an atom
is associated with the configuration z1, and contains all the auxiliary constants
that will allow us to generate, via polynomially many DIDs, all the 2n atoms of
the form conf [s](b1, . . . , bn, a, h, z1, z2, z3, z4).

The above lower bound and the 2ExpTime upper bound for weakly-frontier-
guarded sets of DTGDs in combined complexity [11, Theorem 1] imply that:

Corollary 2. A(U)CQ answering under (weakly-)(frontier-)guarded DTGDs,
linear DTGDs and DIDs is 2ExpTime-complete in combined complexity.

Let us now focus on frontier-guarded DTGDs, and show that query answering
is 2ExpTime-hard, even for ACQs and predicates of bounded arity. This is shown
by exploiting the fact that a CQ ∃Xϕ(X) is actually the frontier-guarded TGD
ϕ(X) → p. We thus have a reduction from CQ answering under frontier-guarded
DTGDs, which is 2ExpTime-hard even for predicates of bounded arity [7].

Theorem 5. ACQ answering under frontier-guarded DTGDs is 2ExpTime-
hard, even for predicates of bounded arity.

The above result and the 2ExpTime upper bound for weakly-frontier-guarded
sets of DTGDs in combined complexity [11, Theorem 1] imply that:

Corollary 3. A(U)CQ answering under (weakly-)frontier-guarded DTGDs is
2ExpTime-complete in case of predicates of bounded arity.
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We conclude this section by establishing the ExpTime-hardness of ACQ
answering when we focus on fixed sets of DIDs. This is done by simulating
an alternating linear space Turing machine M . The idea of the proof is along
the lines of the proofs of Theorems 1 and 4. In particular, on each configuration
node v, which represents the configuration Cv ofM , we attach a cell-chain which
mimics the tape in Cv, and a state-chain which encodes the state of Cv.

Theorem 6. ACQ answering under fixed sets of DIDs is ExpTime-hard.

From Theorems 2, 3 and 6 we get the that:

Corollary 4. A(U)CQ answering under (weakly-)guarded DTGDs, linear DT-
GDs and DIDs is ExpTime-complete for predicates of bounded arity. The same
problem under (weakly-)(frontier-)guarded DTGDs, linear DTGDs and DIDs is
ExpTime-complete for fixed sets of DTGDs.

5 Conclusions

We studied the problem of answering (U)CQs under the main guarded-based
classes of DTGDs. We focussed on three key subclasses of (U)CQs, namely
(U)CQs of bounded hypertree-width, (U)CQs of bounded treewidth, and acyclic
(U)CQs. Our investigation shows that the above query languages do not have the
expected positive impact on our problem, and in most of the cases the complexity
of the problem remains 2ExpTime-complete. However, in some relevant settings,
the complexity reduces to ExpTime-complete if we focus on acyclic queries. We
believe that this finding can have a practical impact on crucial tasks such as
querying graph databases and querying description logic ontologies, where the
attention is usually focussed on unary and binary predicates.
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