431 research outputs found

    1RXS J180408.9-342058: an ultra compact X-ray binary candidate with a transient jet

    Get PDF
    We present a detailed NIR/optical/UV study of the transient low mass X-ray binary 1RXS J180408.9-342058 performed during its 2015 outburst, aimed at determining the nature of its companion star. We obtained three optical spectra at the 2.1 m San Pedro Martir Observatory telescope (Mexico). We performed optical and NIR photometric observations with both the REM telescope and the New Technology Telescope (NTT) in La Silla. We obtained optical and UV observations from the Swift archive. Finally, we performed optical polarimetry of the source by using the EFOSC2 instrument mounted on the NTT. The optical spectrum of the source is almost featureless since the hydrogen and He I emissions lines, typically observed in LMXBs, are not detected. Similarly, carbon and oxygen lines are neither observed. We marginally detect the He II 4686 AA emission line, suggesting the presence of helium in the accretion disc. No significant optical polarisation level was observed. The lack of hydrogen and He I emission lines in the spectrum implies that the companion is likely not a main sequence star. Driven by the tentative detection of the He II 4686 AA emission line, we suggest that the system could harbour a helium white dwarf. If this is the case, 1RXS J180408.9-342058 would be an ultra-compact X-ray binary. By combining an estimate of the mass accretion rate together with evolutionary tracks for a He white dwarf, we obtain a tentative orbital period of ~ 40 min. On the other hand, we also built the NIR-optical-UV spectral energy distribution (SED) of the source at two different epochs. One SED was gathered when the source was in the soft X-ray state, and it is consistent with the presence of a single thermal component. The second SED, obtained when the source was in the hard X-ray state, shows a thermal component together with a tail in the NIR, likely indicating the presence of a (transient) jet.Comment: 8 pages, 5 figures, 4 tables. Accepted for publication in Astronomy & Astrophysics (Section 7

    Movement cognition and narration of the emotions treatment versus standard speech therapy in the treatment of children with borderline intellectual functioning: A randomized controlled trial

    Get PDF
    Background: Borderline intellectual functioning (BIF) is defined as a "health meta-condition... characterized by various cognitive dysfunctions associated with an intellectual quotient (IQ) between 71 and 85 which determines a deficit in the individual's functioning both in the restriction of activities and in the limitation of social participation". It can be caused by many factors, including a disadvantaged background and prematurity. BIF affects 7-12% of primary school children that show academic difficulties due to poor executive functioning. In many children with BIF, language, movement and social abilities are also affected, making it difficult to take part in daily activities. Dropping out of school and psychological afflictions such as anxiety and depression are common in children with BIF. This study investigates whether an intensive rehabilitation program that involves all of the areas affected in children with BIF (Movement, Cognition and Narration of emotions, MCNT) is more effective than Standard Speech Therapy (SST). Methods: This is a multicenter interventional single blind randomized controlled study. Children aged between 6 to 11years who attend a mainstream primary school and have multiple learning difficulties, behavioral problems and an IQ ranging between 85 to 70 have been enrolled. Participants are randomly allocated to one of three groups. The first group receives individual treatment with SST for 45min, twice a week for 9months. The second group receives the experimental treatment MCNT for 3h per day, 5days/ week for 9months and children work in small groups. The third group consists of children on a waiting list for the SST for nine months. Discussion: BIF is a very frequent condition with no ad hoc treatment. Over the long term, there is a high risk to develop psychiatric disorders in adulthood. Due to its high social impact, we consider it very important to intervene during childhood so as to intercept the remarkable plasticity of the developing brain. Trial registration: "Study Let them grow: A new intensive and multimodal Treatment for children with borderline intellectual functioning based on Movement, Cognition and Narration of emotions", retrospectively registered in ISRCTN Register with ISRCTN81710297 at 2017-01-09

    Effects of heat treatment on the catalytic activity and methanol tolerance of carbon-supported platinum alloys

    Get PDF
    This work studies the effect of heat treatment of carbon-dispersed platinum and platinum alloys on its methanol tolerance and catalytic activity as gas diffusion electrodes for oxygen reduction reaction (ORR) in acid medium. The catalyst powders were subjected to heat treatments at three different temperatures for a fixed period at controlled atmospheres. Differences in catalyst morphology were characterized using X-ray diffraction, energy dispersive X-ray analysis and transmission electron microscope techniques. The electrochemical characteristics and activity of the electro-catalysts were evaluated for ORR and methanol tolerance using cyclic voltammetry, in the form of gas diffusion electrodes. The optimum heat-treatment temperature is found to be strongly dependent on the individual catalyst. The maximum ORR activity and better methanol tolerance for the oxygen reduction reaction (ORR) was observed in Pt-Fe/C and Pt-Cu/C catalysts subjected to heat treatment at 350 °C.A trend of catalytic activity for oxygen reduction reaction (ORR) was obtained: Pt-Cu/C (350°C)>Pt-Fe/C (350°C) > Pt-Ni/C (350°C) > Pt-Co/C (250°C) > Pt/C (350°C), showing that Pt-Cu/C-type catalysts had a higher catalytic activity with reasonable methanol tolerance

    Extracellular vesicle-based nucleic acid delivery: Current advances and future perspectives in cancer therapeutic strategies

    Get PDF
    Extracellular vesicles (EVs) are sophisticated and sensitive messengers released by cells to communicate with and influence distant and neighboring cells via selective transfer of bioactive content, including protein lipids and nucleic acids. EVs have therefore attracted broad interest as new and refined potential therapeutic systems in many diseases, including cancer, due to their low immunogenicity, non-toxicity, and elevated bioavailability. They might serve as safe and effective vehicles for the transport of therapeutic molecules to specific tissues and cells. In this review, we focus on EVs as a vehicle for gene therapy in cancer. We describe recent developments in EV engineering to achieve efficient intracellular delivery of cancer therapeutics and avoid off-target effects, to provide an overview of the potential applications of EV-mediated gene therapy and the most promising biomedical advances

    Nafion-TiO2 composite DMFC membranes: Physico-chemical properties of the filier versus electrochemical performance

    Get PDF
    TiO2 nanometric powders were prepared via a sol-gel procedure and calcined at various temperatures to obtain different surface and bulk properties. The calcined powders were used as fillers in composite Nafion membranes for application in high temperature direct methanol fuel cells (DMFCs). The powder physico-chemical properties were investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and pH measurements. The observed characteristics were correlated to the DMFC electrochemical behaviour. Analysis of the high temperature conductivity and DMFC performance reveals a significant influence of the surface characteristics of the ceramic oxide, such as oxygen functional groups and surface area, on the membrane electrochemical behaviour. A maximum DMFC power density of 350 mW cm-2 was achieved under oxygen feed at 145°C in a pressurized DMFC (2.5 bar, anode and cathode) equipped with TiO2 nano-particles based composite membranes. © 2004 Elsevier Ltd. All rights reserved

    Influence of TiO2 nanometric filler on the behaviour of a composite membrane for applications in direct methanol fuel cells

    Get PDF
    Composite Nafion membranes containing various amounts of TiO2 (3 wt%, 5 wt% and 10 wt%) were investigated for operation in high temperature Direct Methanol Fuel Cells (DMFCs). Maximum power density of 350 mW cm -2 was achieved in the presence of oxygen feed at 145°C for the composite membranes containing 3-5 wt% TiO2; whereas, the maximum power density with air feed was about 210 mW cm-2. Moreover, an investigation of the influence of titanium oxide particle size on the electrochemical behaviour of the composite membranes for high temperature operation has been carried out. The DMFC performance increases as the mean particle size of the TiO2 filler decreases. This indicates an influence of the filler morphology on the electrochemical properties of the composite membranes. © J. New. Mat. Electrochem. Systems

    Synthesis, Characterization and Electrocatalytic Activity of Bi- and Tri-metallic Pt-Based Anode Catalysts for Direct Ethanol Fuel Cells

    Get PDF
    Three Pt-based anode catalysts supported on Vulcan XC-72R (VC) were prepared by using a modified polyol process. These materials were characterized and tested by X-Ray Diffraction (XRD), X-Ray Fluorescence (XRF) and Transmission Electron Microscopy (TEM). XRD and TEM analysis indicated that especially the ternary anode catalysts consisted of uniform nanosized particles with sharp distribution. The Pt lattice parameter was smaller, in the ternary PtSnIr catalyst whereas it increased with the addition of Sn and Rh, in the corresponding binary and ternary catalysts. Cyclic voltammetry (CV) measurements showed that Sn, Ir and Rh may act as promoter of Pt enhancing ethanol electro-oxidation activity. It was found that the direct ethanol fuel cell (DEFC) performances were significantly improved with these modified anode catalysts. This effect on the DEFC performance is attributed to the so-called bi-tri-functional mechanism and to the electronic interaction between Pt and additives. The performance increased significantly with the temperature. However, it was also possible to observe some decay with time for all catalysts due to the formation of surface poisons, probably consisting in CO-like species. At 60 °C, the PtSnIr catalyst showed the best performance, as a result of a proper morphology and promoting effectFil: D'Urso, C.. Centro Nazionale della Ricerca. ITAE; ItaliaFil: Bonesi, Alejandro Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina. Universidad Nacional de La Plata; ArgentinaFil: Triaca, Walter Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina. Universidad Nacional de La Plata; ArgentinaFil: Castro Luna Berenguer, Ana Maria del Carmen. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina. Universidad Nacional de La Plata; ArgentinaFil: Baglio, V.. Centro Nazionale della Ricerca. ITAE; Italia; ItaliaFil: Aricò, A. S.. Centro Nazionale della Ricerca. ITAE; Italia; Itali

    Synthesis, Characterization and Electrocatalytic Activity of Bi- and Tri-metallic Pt-Based Anode Catalysts for Direct Ethanol Fuel Cells

    Get PDF
    Three Pt-based anode catalysts supported on Vulcan XC-72R (VC) were prepared by using a modified polyol process. These materials were characterized and tested by X-Ray Diffraction (XRD), X-Ray Fluorescence (XRF) and Transmission Electron Microscopy (TEM). XRD and TEM analysis indicated that especially the ternary anode catalysts consisted of uniform nanosized particles with sharp distribution. The Pt lattice parameter was smaller, in the ternary PtSnIr catalyst whereas it increased with the addition of Sn and Rh, in the corresponding binary and ternary catalysts. Cyclic voltammetry (CV) measurements showed that Sn, Ir and Rh may act as promoter of Pt enhancing ethanol electro-oxidation activity. It was found that the direct ethanol fuel cell (DEFC) performances were significantly improved with these modified anode catalysts. This effect on the DEFC performance is attributed to the so-called bi-tri-functional mechanism and to the electronic interaction between Pt and additives. The performance increased significantly with the temperature. However, it was also possible to observe some decay with time for all catalysts due to the formation of surface poisons, probably consisting in CO-like species. At 60 °C, the PtSnIr catalyst showed the best performance, as a result of a proper morphology and promoting effectFacultad de Ciencias ExactasInstituto de Investigaciones Fisicoquímicas Teóricas y Aplicada
    corecore