122 research outputs found

    Intralinguistic and extralinguistic variation factors in Old French negation with ne-Ø, ne-mie, ne-pas and ne-point across different text types

    Get PDF
    Old French sentential negation (NEG) represents an important morphosyntactic change that has been investigated by a large number of scholars from different theoretical approaches. From the 12th to the 14th (and mainly in the 13th) century, there are two variants of this variable in competition: NEG with only ne (the older variant) and NEG with ne + pas/mie/point, etc. The research presented in this paper has been motivated by the wish to find relevant factors for this variation in Old French. In order to identify factors of influence on the variable NEG with or without pas, mie and point, we analyse two subcorpora containing two different text types. The choice of the tested factors is rooted both in variational linguistics and in previous studies on Old French negation, implying (extralinguistic) diasystematic factors like diatopic and diastratic ones as well as intralinguistic factors like transitivity of the verb, word order and clause type. Main findings are the probable relevance of clause type and the influence of socially definable (diastratic) groups. Beyond this, the results across the two different text type are predominantly similar, but we found differences as well. This leads us to plead in favour of the importance of considering the factor text type while working on diachronic corpor

    Introduction to the special issue: ‘Negation and Clitics in French: Interaction and Variation'

    Get PDF
    This introduction presents very briefly some of the main issues currently discussed around negation particles and clitics in contemporary French and taken up by the six contributions it assembles, namely language change (grammaticalisation of clitics into agreement markers, completion of the Jespersen Cycle) vs. stable variation, and external (sociolinguistic) or internal (phonotactic, prosodic, or syntactic) factors triggering variation in both cases; the hypothesis of a potential diglossia in French opposing two grammars with considerable syntactic differences. Five out of six contributions focus on modern standard and non-standard varieties of French, with a formal theoretical background, while one shows a more philological-descriptive approach and is dedicated to Old French manuscript

    Correlates of Adverse Outcomes in Abdominally Obese Individuals: Findings from the Five-Year Followup of the Population-Based Study of Health in Pomerania

    Get PDF
    Background. Abdominal obesity is a major risk factor of cardiovascular disease (CVD), type 2 diabetes (T2DM), and premature death. However, it has not been resolved which factors predispose for the development of these adverse obesity-related outcomes in otherwise healthy individuals with abdominal obesity. Methods. We studied 1,506 abdominal obese individuals (waist-to-height ratio (WHtR) ≥ 0.5) free of CVD or T2DM from the population-based Study of Health in Pomerania and assessed the incidence of CVD or T2DM after a five-year followup. Logistic regression models were adjusted for major cardiovascular risk factors and liver, kidney diseases, and sociodemographic status. Results. During follow-up time, we observed 114 and 136 new T2DM and CVD cases, respectively. Regression models identified age, waist circumference, serum glucose, and liver disease as predictors of T2DM. Regarding CVD, only age, unemployment, and a divorced or widowed marital status were significantly associated with incident CVD. In this subgroup of obese individuals blood pressure, serum glucose, or lipids did not influence incidence of T2DM or CVD. Conclusion. We identified various factors associated with an increased risk of incident T2DM and CVD among abdominally obese individuals. These findings may improve the detection of high-risk individuals and help to advance prevention strategies in abdominal obesity

    Extensive alterations of the whole-blood transcriptome are associated with body mass index: results of an mRNA profiling study involving two large population-based cohorts

    Get PDF
    Background: Obesity, defined as pathologically increased body mass index (BMI),is strongly related to an increased risk for numerous common cardiovascular and metabolic diseases. It is particularly associated with insulin resistance, hyperglycemia, and systemic oxidative stress and represents the most important risk factor for type 2 diabetes (T2D). However, the pathophysiological mechanisms underlying these associations are still not completely understood. Therefore, in order to identify potentially disease-relevant BMI-associated gene expression signatures, a transcriptome-wide association study (TWAS) on BMI was performed. Methods: Whole-blood mRNA levels determined by array-based transcriptional profiling were correlated with BMI in two large independent population-based cohort studies (KORA F4 and SHIP-TREND) comprising a total of 1977 individuals. Results: Extensive alterations of the whole-blood transcriptome were associated with BMI: More than 3500 transcripts exhibited significant positive or negative BMI-correlation. Three major whole-blood gene expression signatures associated with increased BMI were identified. The three signatures suggested: i) a ratio shift from mature erythrocytes towards reticulocytes, ii) decreased expression of several genes essentially involved in the transmission and amplification of the insulin signal, and iii) reduced expression of several key genes involved in the defence against reactive oxygen species (ROS). Conclusions: Whereas the first signature confirms published results, the other two provide possible mechanistic explanations for well-known epidemiological findings under conditions of increased BMI, namely attenuated insulin signaling and increased oxidative stress. The putatively causative BMI-dependent down-regulation of the expression of numerous genes on the mRNA level represents a novel finding. BMI-associated negative transcriptional regulation of insulin signaling and oxidative stress management provide new insights into the pathogenesis of metabolic syndrome and T2D

    A meta-analysis of gene expression signatures of blood pressure and hypertension.

    Get PDF
    Genome-wide association studies (GWAS) have uncovered numerous genetic variants (SNPs) that are associated with blood pressure (BP). Genetic variants may lead to BP changes by acting on intermediate molecular phenotypes such as coded protein sequence or gene expression, which in turn affect BP variability. Therefore, characterizing genes whose expression is associated with BP may reveal cellular processes involved in BP regulation and uncover how transcripts mediate genetic and environmental effects on BP variability. A meta-analysis of results from six studies of global gene expression profiles of BP and hypertension in whole blood was performed in 7017 individuals who were not receiving antihypertensive drug treatment. We identified 34 genes that were differentially expressed in relation to BP (Bonferroni-corrected p<0.05). Among these genes, FOS and PTGS2 have been previously reported to be involved in BP-related processes; the others are novel. The top BP signature genes in aggregate explain 5%-9% of inter-individual variance in BP. Of note, rs3184504 in SH2B3, which was also reported in GWAS to be associated with BP, was found to be a trans regulator of the expression of 6 of the transcripts we found to be associated with BP (FOS, MYADM, PP1R15A, TAGAP, S100A10, and FGBP2). Gene set enrichment analysis suggested that the BP-related global gene expression changes include genes involved in inflammatory response and apoptosis pathways. Our study provides new insights into molecular mechanisms underlying BP regulation, and suggests novel transcriptomic markers for the treatment and prevention of hypertension

    Investigating the causal effect of smoking on hay fever and asthma: a Mendelian randomization meta-analysis in the CARTA consortium

    Get PDF
    AbstractObservational studies on smoking and risk of hay fever and asthma have shown inconsistent results. However, observational studies may be biased by confounding and reverse causation. Mendelian randomization uses genetic variants as markers of exposures to examine causal effects. We examined the causal effect of smoking on hay fever and asthma by using the smoking-associated single nucleotide polymorphism (SNP) rs16969968/rs1051730. We included 231,020 participants from 22 population-based studies. Observational analyses showed that current vs never smokers had lower risk of hay fever (odds ratio (OR) = 0·68, 95% confidence interval (CI): 0·61, 0·76; P &lt; 0·001) and allergic sensitization (OR = 0·74, 95% CI: 0·64, 0·86; P &lt; 0·001), but similar asthma risk (OR = 1·00, 95% CI: 0·91, 1·09; P = 0·967). Mendelian randomization analyses in current smokers showed a slightly lower risk of hay fever (OR = 0·958, 95% CI: 0·920, 0·998; P = 0·041), a lower risk of allergic sensitization (OR = 0·92, 95% CI: 0·84, 1·02; P = 0·117), but higher risk of asthma (OR = 1·06, 95% CI: 1·01, 1·11; P = 0·020) per smoking-increasing allele. Our results suggest that smoking may be causally related to a higher risk of asthma and a slightly lower risk of hay fever. However, the adverse events associated with smoking limit its clinical significance.</jats:p

    A meta-analysis of gene expression signatures of blood pressure and hypertension

    Get PDF
    Genome-wide association studies (GWAS) have uncovered numerous genetic variants (SNPs) that are associated with blood pressure (BP). Genetic variants may lead to BP changes by acting on intermediate molecular phenotypes such as coded protein sequence or gene expression, which in turn affect BP variability. Therefore, characterizing genes whose expression is associated with BP may reveal cellular processes involved in BP regulation and uncover how transcripts mediate genetic and environmental effects on BP variability. A meta-analysis of results from six studies of global gene expression profiles of BP and hypertension in whole blood was performed in 7017 individuals who were not receiving antihypertensive drug treatment. We identified 34 genes that were differentially expressed in relation to BP (Bonferroni-corrected p<0.05). Among these genes, FOS and PTGS2 have been previously reported to be involved in BP-related processes; the others are novel. The top BP signature genes in aggregate explain 5%-9% of inter-individual variance in BP. Of note, rs3184504 in SH2B3, which was also reported in GWAS to be associated with BP, was found to be a trans regulator of the expression of 6 of the transcripts we found to be associated with BP (FOS, MYADM, PP1R15A, TAGAP, S100A10, and FGBP2). Gene set enrichment analysis suggested that the BP-related global gene expression changes include genes involved in inflammatory response and apoptosis pathways. Our study provides new insights into molecular mechanisms underlying BP regulation, and suggests novel transcriptomic markers for the treatment and prevention of hypertension
    corecore