66 research outputs found

    Improved radial heat sink for led lamp cooling

    Get PDF
    This paper presents a numerical study concerning an improved heat sink for a light emitting diodes (LED) lamp operating under natural convection conditions. Basic geometry of the heat sink is of cylindrical nature, to be obtained from cutting an aluminum extruded bar comprising a cylindrical central core and a number of uniformly distributed radial fins. Minimum diameter of the central core is fixed and the parameters to be explored are the number of fins, their thickness, length (radial dimension) and height. Although not included in the numerical simulations, the thermal resistance due to the use of a thin thermal interface material (TIM) layer between the LED lamp back and the heat sink is taken into account in the analysis. The main objective of the heat sink is to cool the LED lamp so that the lamp maximum temperature at the contact region with the heat sink is maintained below the critical temperature given by the manufacturer. This is a crucial aspect in what concerns the expected lifetime of the LED lamp and should be achieved at the expenses of as low as possible aluminum mass. Taking these criteria in mind, a design procedure is proposed and followed in the search for the improved heat sink to cool a particular LED lamp. Results obtained with the commercial code ANSYS-CFX clearly show the relative importance of the different governing parameters on the heat sink performance and allow the choice of the better solution within the frame of dimensional constrains. Although the present results concern a particular LED lamp, the proposed methodology can be extended to other types of heat sinks for general light and/or electronic components

    Dynamic mechanical analysis and creep behaviour of ß-PVDF films

    Get PDF
    In this work, tensile dynamic mechanical analysis (DMA) was used to characterise the solid-state rheological properties of a commercial ß-polyvinylidene fluoride (PVDF) film in the two main directions (longitudinal and transversal to the stretch direction). The ß-relaxation, assigned to the segmental motions within the amorphous phase, is observed at∼−25 ◦C. The alpha-c-relaxation is observed above room temperature. This relaxation is the main responsible for the anelastic properties of the material and to the short-term creep behaviour. Longer-term creep tests along the longitudinal direction were also performed and the Eyring model was applied, in order to characterize the flow-process within the polymeric structure. The results suggest that long-term creep is mostly controlled by the deformation of amorphous tie-chains that connect adjacent crystalline lamellae.Fundação para a Ciência e Tecnologia (FCT) - Programa Operacional "Ciência, Tecnologia, Inovação" (POCTI) - POCTI/CTM/33501/99

    Acetic Acid Induces Sch9p-dependent Translocation of Isc1p from the Endoplasmic Reticulum into Mitochondria

    Get PDF
    Changes in sphingolipid metabolism have been linked to modulation of cell fate in both yeast and mammalian cells. We previously assessed the role of sphingolipids in cell death regulation using a well characterized yeast model of acetic acid-induced regulated cell death, finding that Isc1p, inositol phosphosphingolipid phospholipase C, plays a pro-death role in this process. Indeed, isc1∆ mutants exhibited a higher resistance to acetic acid associated with reduced mitochondrial alterations. Here, we show that Isc1p is regulated by Sch9p under acetic acid stress, since both single and double mutants lacking Isc1p or/and Sch9p have the same resistant phenotype, and SCH9 deletion leads to a higher retention of Isc1p in the endoplasmic reticulum upon acetic acid exposure. We also found that the higher resistance of all mutants correlates with higher levels of endogenous mitochondrial phosphorylated long chain bases (LCBPs), suggesting that changing the sphingolipid balance in favour of LCBPs in mitochondria results in increased survival to acetic acid. In conclusion, our results suggest that Sch9p pathways modulate acetic acid-induced cell death, through the regulation of Isc1p cellular distribution, thus affecting the sphingolipid balance that regulates cell fate

    Photocatalysis of functionalised 3D printed cementitious materials

    Get PDF
    The main objective of this study was to evaluate the photocatalytic behaviour of 3D printed cementitious mortars that were functionalised with TiO2 nanoparticles. This study is one of the few available regarding functionalisation of 3D concrete printing (3DCP) with photocatalytic properties. Despite the fact 3DCP research is swiftly growing, it is still necessary further investigation to fully understand these materials’ physicochemical and mechanical properties, which will influence the functionalised properties of the composite. Due to the freeform nature of the 3DCP there are no moulds, therefore the functionalisation through coating can be performed in a much earlier stage than in conventional moulded concrete. The developed smart 3D printed concrete could promote the photodegradation of pollutants for self-cleaning and air purification. In particular, this study investigated the effect of two parameters on photocatalytic behaviour: light power intensity and the coating rate of nano-TiO2 particles. Surface coating was adopted as the functionalisation method, and the Rhodamine B dye degradation efficiency was used as an indicator to evaluate the photocatalytic behaviour. Additionally, the surface roughness and microstructure of the 3D printed cementitious mortar specimens were assessed to distinguish between the reference and TiO2 coated series. Scanning electron microscopy (SEM), X-ray Energy dispersive spectroscopy (EDS), and X-ray diffraction (XRD) crystallography were carried out as three techniques to evaluate the morphology, composition, and microstructure of the specimens, respectively. The results indicated successful activation of catalyst particles under illumination, where higher light power intensity increased the degradation efficiency. Furthermore, dye degradation efficiency increased with increasing coating rates of nano-TiO2 particles on the surface of the specimens. The roughness of the 3D printed specimens’ surface was sufficient for settling the nano-TiO2 particles. Finally, microscopy results confirmed the presence and suitable distribution of the nano-TiO2 particles on the surface of the coated specimens.Support SECIL, SIKA, ELKEM and UNIBETAO, which graciously provided the required materials for printing the cementitious specimensThis work was partly financed by Fundaç˜ao para a Ciˆencia e a Tecnologia (FCT)/MCTES through national funds (PIDDAC) under the R&D Unit Institute for Sustainability and Innovation in Structural Engineering (ISISE), under reference UIDB/04029/2020. The authors acknowledge the support of DST group construction company for funding the project Chair dst/IB-S: Smart Systems for Construction. The first two authors would like to acknowledge the PhD grants SFRH/BD/143636/2019 and SFRH/BD/137421/2018 provided by the Portuguese Foundation for Science and Technology (FCT). Additionally, the authors would like to acknowledge FCT for the financing this research work by the project NanoAir PTDC/FIS-MAC/6606/2020 and the Strategic Funding UIDB/04650/ 2020–2023

    The NAD+-dependent deacetylase SIRT2 attenuates oxidative stress and mitochondrial dysfunction and improves insulin sensitivity in hepatocytes

    Get PDF
    Funding Information: European Regional Development Fund (ERDF), Centro 2020 Regional Operational Programme (CENTRO-01-0145-FEDER-000012: HealthyAging2020); COMPETE 2020 - Operational Programme for Competitiveness and Internationalisation and Portuguese national funds via FCT – Fundação para a Ciência e a Tecnologia (POCI-01-0145-FEDER-007440, SFRH/BPD/109347/ 2015 to R.M.O., SFRH/BD/86655/2012 to L.N. and SFRH/BPD/ 111815/2015 to P.G.); FLAD Life Science 2020 Grant to A.C.R.; European Molecular Biology Organization (EMBO Installation Grant to T.F.O.); DFG Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB) to T.F.O.Insulin resistance is a major predictor of the development of metabolic disorders. Sirtuins (SIRTs) have emerged as potential targets that can be manipulated to counteract age-related diseases, including type 2 diabetes. SIRT2 has been recently shown to exert important metabolic effects, but whether SIRT2 regulates insulin sensitivity in hepatocytes is currently unknown. The aim of this study is to investigate this possibility and to elucidate underlying molecular mechanisms. Here, we show that SIRT2 is downregulated in insulin-resistant hepatocytes and livers, and this was accompanied by increased generation of reactive oxygen species, activation of stress-sensitive ERK1/2 kinase, and mitochondrial dysfunction. Conversely, SIRT2 overexpression in insulin-resistant hepatocytes improved insulin sensitivity, mitigated reactive oxygen species production and ameliorated mitochondrial dysfunction. Further analysis revealed a reestablishment of mitochondrial morphology, with a higher number of elongated mitochondria rather than fragmented mitochondria instigated by insulin resistance. Mechanistically, SIRT2 was able to increase fusion-related protein Mfn2 and decrease mitochondrial-associated Drp1. SIRT2 also attenuated the downregulation of TFAM, a key mtDNA-associated protein, contributing to the increase in mitochondrial mass. Importantly, we found that SIRT2 expression in PBMCs of human subjects was negatively correlated with obesity and insulin resistance. These results suggest a novel function for hepatic SIRT2 in the regulation of insulin sensitivity and raise the possibility that SIRT2 activators may offer novel opportunities for preventing or treating insulin resistance and type 2 diabetes.publishersversionpublishe

    The NAD+-dependent deacetylase SIRT2 attenuates oxidative stress and mitochondrial dysfunction and improves insulin sensitivity in hepatocytes

    Get PDF
    Insulin resistance is a major predictor of the development of metabolic disorders. Sirtuins (SIRTs) have emerged as potential targets that can be manipulated to counteract age-related diseases, including type 2 diabetes. SIRT2 has been recently shown to exert important metabolic effects, but whether SIRT2 regulates insulin sensitivity in hepatocytes is currently unknown. The aim of this study is to investigate this possibility and to elucidate underlying molecular mechanisms. Here, we show that SIRT2 is downregulated in insulin-resistant hepatocytes and livers, and this was accompanied by increased generation of reactive oxygen species, activation of stress-sensitive ERK1/2 kinase, and mitochondrial dysfunction. Conversely, SIRT2 overexpression in insulin-resistant hepatocytes improved insulin sensitivity, mitigated reactive oxygen species production and ameliorated mitochondrial dysfunction. Further analysis revealed a reestablishment of mitochondrial morphology, with a higher number of elongated mitochondria rather than fragmented mitochondria instigated by insulin resistance. Mechanistically, SIRT2 was able to increase fusion-related protein Mfn2 and decrease mitochondrial-associated Drp1. SIRT2 also attenuated the downregulation of TFAM, a key mtDNA-associated protein, contributing to the increase in mitochondrial mass. Importantly, we found that SIRT2 expression in PBMCs of human subjects was negatively correlated with obesity and insulin resistance. These results suggest a novel function for hepatic SIRT2 in the regulation of insulin sensitivity and raise the possibility that SIRT2 activators may offer novel opportunities for preventing or treating insulin resistance and type 2 diabetes.European Regional Development Fund (ERDF), Centro 2020 Regional Operational Programme (CENTRO-01-0145-FEDER-000012: HealthyAging2020); COMPETE 2020 - Operational Programme for Competitiveness and Internationalisation and Portuguese national funds via FCT – Fundação para a Ciência e a Tecnologia (POCI-01-0145-FEDER-007440, SFRH/BPD/109347/2015 to R.M.O., SFRH/BD/86655/2012 to L.N. and SFRH/BPD/111815/2015 to P.G.); FLAD Life Science 2020 Grant to A.C.R.; European Molecular Biology Organization (EMBO Installation Grant to T.F.O.); DFG Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB) to T.F.O

    Errors in protein synthesis increase the level of saturated fatty acids and affect the overall lipid profiles of yeast

    Get PDF
    The occurrence of protein synthesis errors (mistranslation) above the typical mean mistranslation level of 10-4 is mostly deleterious to yeast, zebrafish and mammal cells. Previous yeast studies have shown that mistranslation affects fitness and deregulates genes related to lipid metabolism, but there is no experimental proof that such errors alter yeast lipid profiles. We engineered yeast strains to misincorporate serine at alanine and glycine sites on a global scale and evaluated the putative effects on the lipidome. Lipids from whole cells were extracted and analysed by thin layer chromatography (TLC), liquid chromatography-mass spectrometry(LC-MS) and gas chromatography (GC). Oxidative damage, fatty acid desaturation and membrane fluidity changes were screened to identify putative alterations in lipid profiles in both logarithmic (fermentative) and post-diauxic shift (respiratory) phases. There were alterations in several lipid classes, namely lyso-phosphatidylcholine, phosphatidic acid, phosphatidylethanolamine, phosphatidylinositol, phosphatidylserine, and triglyceride, and in the fatty acid profiles, namely C16:1, C16:0, C18:1 and C18:0. Overall, the relative content of lipid species with saturated FA increased in detriment of those with unsaturated fatty acids. The expression of the OLE1 mRNA was deregulated, but phospholipid fluidity changes were not observed. These data expand current knowledge of mistranslation biology and highlight its putative roles in human diseases.publishe

    Adaptation and validation of the Inventory of family protective factors for the portuguese culture

    Get PDF
    Aim: Describe the process of cultural adaptation and validation of Inventory of Family Protective Factors (IFPF) for portuguese culture. This instrument assesses the protective factors that contribute to family resilience. Studies of resilience fall the salutogenic paradigm, which focuses on protective factors of individuals or groups, without minimizing the risk factors and vulnerability. Methods: We applied this instrument to 85 families of children with special needs and, after linguistic and conceptual equivalence, used an exploratory factor analysis with principal components analysis (with varimax rotation) and calculated the Cronbach's alpha coefficient for each dimension. Results: adequate psychometric properties to be used in Portuguese population (Cronbach´s alpha =.90). Conclusion: IFPF is an useful instrument for studies which propose assess the protective factors of family resilience, however we suggest further studies of revalidation.Objetivo: Describir el proceso de adaptación cultural y validación para la cultura portuguesa de Inventory of Family Protective Factors (IFPF). Este instrumento evalúa los factores de protección que contribuyan a la resiliencia familiar. Estudios de resiliência familiar se apoyan en el paradigma salutogénico, que se centra en los factores de protección de individuos o grupos, sin subestimar los factores de riesgo y vulnerabilidad. Metodologia: Aplicamos este instrumento a 85 familias de niños con necesidades especiales y, después de la equivalencia lingüística y conceptual, hemos llevado a cabo un análisis factorial exploratorio de componentes principales con rotación varimax y calculamos el coeficiente alfa de Cronbach. Resultados: la IFPF tiene adecuadas propiedades psicométricas para la población portuguesa (alfa de Cronbach = .90). Conclusion: Esta es una herramienta útil para evaluar los factores protectores de la resiliencia familiar, sin embargo sugerimos estudios futuros de revalidación.Objetivos: adaptar e validar o Inventory of Family Protective Factors (IFPF) para a cultura portuguesa. Este instrumento avalia os fatores protetores que contribuem para a resiliência familiar. Os estudos sobre resiliência inserem-se no paradigma salutogénico, abordando os fatores protetores dos indivíduos ou grupos, sem subestimar os fatores de risco ou vulnerabilidade. Método: para avaliar a equivalência linguística e conceitual do IFPF realizamos a tradução, retroversão e reflexão falada; para aferir as características psicométricas do instrumento verificamos a sensibilidade, confiabilidade e a validade dos resultados. Realizamos uma análise fatorial de componentes principais com rotação varimax dos itens da escala e calculamos o coeficiente Alpha de Cronbach para cada dimensão. Através de uma amostragem aleatória simples, aplicamos este instrumento a 85 famílias de crianças com necessidades especiais que o auto-preencheram. Resultados: o IFPF apresenta características psicométricas adequadas para a população portuguesa (alfa de Cronbach de .90). Conclusão: o IFPF foi adaptado e validado para a cultura portuguesa. Consideramos tratar-se de um instrumento útil para estudos que se proponham avaliar os fatores protetores da resiliência familiar

    Application of nano-TiO2 and micro-PTFE on recycled asphalt mixtures for superhydrophobic functionalization

    Get PDF
    The main objective of this research is to improve the efficiency and durability of the superhydrophobic capability on asphalt mixtures. In general, the benefits of this capability on materials are several, for example, water-resistance, anti-icing, antibacterial, contaminant-free, self cleaning, anticorrosive, among others [1]. Through this type of functionalization, road engineering researchers seek to improve water repelling and resistance, and prevent ice formation on pavements [2–4]. Additionaly, it generates the self-cleaning ability, relevant to remove remove dust from the surface. All these aspects are mostly related to the mitigation of friction decrease caused by water, ice, or even dust over the surface of the pavements. The superhydrophobic capability is achieved when the Water Contact Angle (WCA) between a water droplet and the material surface is higher than 150° [1]. In this research, three asphalt mixtures, type AC 10, were functionalized: R (reference), without any recycled material; F, with 30% reclaimed asphalt pavement (RAP); and A, with 30% steel slags (SS). The functionalization process consisted of two successive spraying coatings: i) spraying of a diluted resin epoxy and ii) spraying of a solution composed of nano-TiO2 and micro-PTFE (under ethyl alcohol medium with a concentration of 4 g/L of each solute). The epoxy resin was diluted using butyl acetate with a proportion of 1:1 in mass. The cut asphalt mixture samples (25 x 25 x 15 mm3 ) were sprayed with 0.25, 0.50, 1, and 2 g of the diluted resin, resulting in a covering ratio of 0.1, 0.2, 0.4, and 0.8 mg/cm2 , and with 8 mL/cm2 of the particles’ solution both at room temperature. The wettability of the mixtures without any treatment, with only resin spraying coating and with both spraying coatings (resin and particles) was assessed by the Water Contact Angle (WCA). The results showed that F and R present similar initial WCA, 108° and 115° respectively, while mixture A presented a much higher WCA (131°). The spraying of the resin decreases the WCA, the higher resin content lead to lower WCA. The superhydrophobic capability was achieved for R and F samples with 0.25 and 0.50 g of resin spraying with particles. The mixture A achieved the superhydrophobicity only with 0.25 g of resin spraying with particle

    Challenges in spintronic platforms for biomedical applications

    Get PDF
    Integrated spintronic biochip platforms are being developed for portable, point-of-care, diagnostic and cytometric applications [1,2]. Hybrid systems incorporating magnetoresistive sensors are applied to neuroelectronic studies and biomedical imaging, namely magnetoencephalography and magnetocardiography. Lab-on-a-chip MR-based platforms are under development to perform biological studies at the single molecule level. This review introduces and discusses the potential and main characteristics of those MR-based biomedical devices, comparing to the existing technologies, while giving particular examples of targeted applications. Applications to the detection of DNA hybridization events (DNA-chips) [3] and antibody-antigen recognition at immunoassays (immuno-chips) [4] are discussed. Particular examples for cell free DNA and genomic sequences detection, for pathogen (Salmonella enteritidis, see Fig.1) detection and for flow cytometry (separation and counting) of CD34+ magnetically labeled cells coming from bone marrow or cord blood samples are given. Moreover, lateral immuno-assay configurations where analytes are labeled with magnetic nanoparticles are discussed. For biomedical imaging applications, field sensitivity is being pushed towards 1pT/sqrt(Hz) and below in hybrid devices incorporating flux guides with the magnetoresistive element allowing the direct detection of bio-magnetic fields (from brain and heart). For neuroelectronic applications, sensors are being incorporated in microelectrode arrays (Si and polyimide) to record spontaneous or stimulated neural activity (in vitro and in vivo, see Fig.2)
    corecore