754 research outputs found

    Focal-plane generation of multi-resolution and multi-scale image representation for low-power vision applications

    Get PDF
    Early vision stages represent a considerably heavy computational load. A huge amount of data needs to be processed under strict timing and power requirements. Conventional architectures usually fail to adhere to the specifications in many application fields, especially when autonomous vision-enabled devices are to be implemented, like in lightweight UAVs, robotics or wireless sensor networks. A bioinspired architectural approach can be employed consisting of a hierarchical division of the processing chain, conveying the highest computational demand to the focal plane. There, distributed processing elements, concurrent with the photosensitive devices, influence the image capture and generate a pre-processed representation of the scene where only the information of interest for subsequent stages remains. These focal-plane operators are implemented by analog building blocks, which may individually be a little imprecise, but as a whole render the appropriate image processing very efficiently. As a proof of concept, we have developed a 176x144-pixel smart CMOS imager that delivers lighter but enriched representations of the scene. Each pixel of the array contains a photosensor and some switches and weighted paths allowing reconfigurable resolution and spatial filtering. An energy-based image representation is also supported. These functionalities greatly simplify the operation of the subsequent digital processor implementing the high level logic of the vision algorithm. The resulting figures, 5.6m W@30fps, permit the integration of the smart image sensor with a wireless interface module (Imote2 from Memsic Corp.) for the development of vision-enabled WSN applications.Junta de Andalucía 2006-TIC-2352Ministerio de Ciencia e Innovación TEC 2009-11812Office of Naval Research (USA) N00014111031

    Autonomous aerial robot for high-speed search and intercept applications

    Get PDF
    In recent years, high-speed navigation and environment interaction in the context of aerial robotics has become a field of interest for several academic and industrial research studies. In particular, Search and Intercept (SaI) applications for aerial robots pose a compelling research area due to their potential usability in several environments. Nevertheless, SaI tasks involve a challenging development regarding sensory weight, onboard computation resources, actuation design, and algorithms for perception and control, among others. In this work, a fully autonomous aerial robot for high-speed object grasping has been proposed. As an additional subtask, our system is able to autonomously pierce balloons located in poles close to the surface. Our first contribution is the design of the aerial robot at an actuation and sensory level consisting of a novel gripper design with additional sensors enabling the robot to grasp objects at high speeds. The second contribution is a complete software framework consisting of perception, state estimation, motion planning, motion control, and mission control in order to rapidly and robustly perform the autonomous grasping mission. Our approach has been validated in a challenging international competition and has shown outstanding results, being able to autonomously search, follow, and grasp a moving object at 6 m/s in an outdoor environment.Agencia Estatal de InvestigaciónKhalifa Universit

    CCR5Δ32 variant and cardiovascular disease in patients with rheumatoid arthritis: a cohort study

    Get PDF
    Introduction The aim of our study was to analyze the influence of the CCR5Δ32 polymorphism in the risk of cardiovascular (CV) events and subclinical atherosclerosis among patients with rheumatoid arthritis (RA). Methods A total of 645 patients fulfilling the American Rheumatism Association 1987 revised classification criteria for RA were studied. Patients were genotyped for the CCR5 rs333 polymorphism using predesigned TaqMan assays. Also, HLA DRB1 genotyping was performed using molecular-based methods. Carotid intima-media thickness, flow-mediated endothelium-dependent dilatation (FMD) and endothelium-independent vasodilatation, which were used as surrogate markers of subclinical atherosclerosis, were measured in a subgroup of patients with no clinical CV disease. Results A lower frequency of carriers of the CCR5Δ32 allele among patients with CV events (3.4% versus 11.3%, P = 0.025, odds ratio 0.28, 95% confidence interval (95% CI) 0.06 to 0.89) was observed. However, after adjusting for gender, age at time of RA diagnosis, and the presence of shared epitope, rheumatoid factor and classic CV risk factors in the Cox regression analysis, this reduction of CV events in CCR5Δ32 allele carriers was slightly outside the range of significance (P = 0.097; hazard ratio 0.37 (95% CI 0.12 to 1.19)). Carriers of the CCR5Δ32 deletion also showed higher FMD values than the remaining patients (CCR5/CCR5Δ32 patients: 7.03% ± 6.61% versus CCR5/CCR5 patients: 5.51% ± 4.66%). This difference was statistically significant when analysis of covariance was performed (P = 0.024). Conclusions Our results show a potential influence of the CCR5Δ32 deletion on the risk of CV disease among patients with RA. This may be due to a protective effect of this allelic variant against the development of vascular endothelial dysfunction

    Synthesis and characterization of PtTe₂ multi-crystallite nanoparticles using organotellurium nanocomposites

    Get PDF
    Herein, we report the synthesis of new PtTe₂ multi-crystallite nanoparticles (NPs) in different sizes through an annealing process using new nanostructured Pt-Te organometallic NPs as a single source precursor. This precursor was obtained in a single reaction step using Ph₂Te₂ and H₂PtCl₆ and could be successfully size controlled in the nanoscale range. The resulting organometallic composite precursor could be thermally decomposed in 1,5 pentanediol to yield the new PtTe₂ multi-crystallite NPs. The final size of the multi-crystallite spheres was successfully controlled by selecting the nanoprecursor size. The sizes of the PtTe₂ crystallites formed using the large spheres were estimated to be in the range of 2.5-6.5 nm. The results provide information relevant to understanding specific mechanistic aspects related to the synthesis of organometallic nanomaterials and nanocrystals based on platinum and tellurium

    Aglomeración acústica de partículas

    Get PDF
    PACS: 43.35, 43.25.-- Publicado en el Vol. XXXI, núm. 3-4, tercer y cuarto trimestre 2000 de la Revista de Acústica: Número especial dedicado al XXV Aniversario del Instituto de Acústica del C.S.I.C.[ES] En este trabajo se presenta una recopilación de las principales aportaciones llevadas a cabo en el campo de la aglomeración acústica de partículas desde 1972. A lo largo de este periodo de tiempo se ha consolidado esta línea de investigación. Se han estudiado y simulado numéricamente los mecanismos básicos del proceso de aglomeración. Paralelamente se han desarrollado y validado nuevos sistemas macrosónicos a escala de laboratorio y de planta piloto para la retención de partículas finas (0.1 - 2.5 μm) en efluentes industriales. Los principales logros científicos llevados a cabo en esta temática han dado lugar a más de setenta publicaciones internacionales.[EN] A summary of the most relevant R+D contributions since 1972 on the acoustic particle agglomeration is presented in this paper. Along this period the research topic has been well consolidated. The basic mechanisms involved in the agglomeration process have been studied and simulated numerically. In parallel, new macrosonic systems at laboratory and pilot plant scale have been developed and validated to reduce fine particle emissions (0.1 - 2.5 μm). The main scientific results obtained were published in more than seventy international papers.Peer reviewe

    Malignancy after heart transplantation: incidence, prognosis and risk factors

    Get PDF
    [Abstract] The Spanish Post-Heart-Transplant Tumour Registry comprises data on neoplasia following heart transplantation (HT) for all Spanish HT patients (1984–2003). This retrospective analysis of 3393 patients investigated the incidence and prognosis of neoplasia, and the influence of antiviral prophylaxis. About 50% of post-HT neoplasias were cutaneous, and 10% lymphomas. The cumulative incidence of skin cancers and other nonlymphoma cancers increased with age at HT and with time post-HT (from respectively 5.2 and 8.9 per 1000 person-years in the first year to 14.8 and 12.6 after 10 years), and was greater among men than women. None of these trends held for lymphomas. Induction therapy other than with IL2R-blockers generally increased the risk of neoplasia except when acyclovir was administered prophylactically during the first 3 months post-HT; prophylactic acyclovir halved the risk of lymphoma, regardless of other therapies. Institution of MMF during the first 3 months post-HT reduced the incidence of skin cancer independently of the effects of sex, age group, pre-HT smoking, use of tacrolimus in the first 3 months, induction treatment and antiviral treatment. Five-year survival rates after first tumor diagnosis were 74% for skin cancer, 20% for lymphoma and 32% for other tumors

    Prevalence and severity of renal dysfunction among 1062 heart transplant patients according to criteria based on serum creatinine and estimated glomerular filtration rate: results from the CAPRI study

    Get PDF
    [Abstract] Chronic kidney disease (CKD) is staged on the basis of glomerular filtration rate; generally, the MDRD study estimate, eGFR, is used. Renal dysfunction (RD) in heart transplant (HT) patients is often evaluated solely in terms of serum creatinine (SCr). In a cross-sectional, 14-center study of 1062 stable adult HT patients aged 59.1 ± 12.5 yr (82.3% men), RD was graded as absent-or-mild (AoM), moderate, or severe (this last including dialysis and kidney graft) by two classifications: SCr-RD (SCr cutoffs 1.6 and 2.5 mg/dL) and eGFR-RD (eGFR cutoffs 60 and 30 mL/min/1.73 m2). SCr-RD was AoM in 68.5% of patients, moderate in 24.9%, and severe in 6.7%; eGFR-RD, AoM in 38.6%, moderate in 52.2%, severe in 9.2%. Among patients evaluated 9.5 yr post-HT (the periods defined by time-since-transplant quartiles), AoM/moderate/severe RD prevalences were 9.5, SCr-RD 58/32/10%, eGFR-RD 32/52/16%. The prevalence of severe RD increases with time since transplant. If the usual CKD stages are appropriate for HT patients, the need for less nephrotoxic immunosuppressants and other renoprotective measures is greater than is suggested by direct SCr-based grading, which should be abandoned as excessively insensitive

    Triggering Mechanisms of Tsunamis in the Gulf of Cadiz and the Alboran Sea: An Overview

    Get PDF
    The Gulf of Cadiz and the Alboran Sea are characterized by tectonic activity due to oblique convergence at the boundary between the Eurasian and Nubian plates. This activity has favoured a variety of tsunamigenic sources: basically, seismogenic faults and submarine landslides. The main tsunamigenic faults in the Gulf of Cadiz would comprise the thrust systems of Gorringe Ridge, Marquês de Pombal, São Vicente Canyon, and Horseshoe faults with a high susceptibility; meanwhile in the Alboran Sea would be the thrust system of the northern Alboran Ridge with high susceptibility, and the thrust systems of north Xauen and Adra margin, the transpressive segment of Al Idrissi fault, and the Yusuf-Habibas and Averroes faults, with moderate to high susceptibility. The areas with the greatest potential to generate tsunamigenic submarine landslides are in the Gulf of Cadiz, the São Vicente Canyon, Hirondelle Seamount, and Gorringe Ridge; and in the Alboran Sea are the southern and northern flanks of Alboran Ridge. Both sources are likely to generate destructive tsunamis in the Gulf of Cadiz, given its history of bigger earthquakes (>7 Mw) and larger landslides. To fully assess tsunamigenic sources, further work needs to be performed. In the case of seismogenic faults, research focuses on geometry, offsets, timing, paleoearthquakes, and recurrence, and in landslides on early post-failure evolution, age, events, and recurrence. In situ measurements, paleotsunami records, and long-term monitoring, in addition to major modelling developments, will be also necessary.Versión del edito

    CartoCell, a high-content pipeline for 3D image analysis, unveils cell morphology patterns in epithelia

    Get PDF
    Decades of research have not yet fully explained the mechanisms of epithelial self-organization and 3D packing. Single-cell analysis of large 3D epithelial libraries is crucial for understanding the assembly and function of whole tissues. Combining 3D epithelial imaging with advanced deep-learning segmentation methods is essential for enabling this high-content analysis. We introduce CartoCell, a deep-learning-based pipeline that uses small datasets to generate accurate labels for hundreds of whole 3D epithelial cysts. Our method detects the realistic morphology of epithelial cells and their contacts in the 3D structure of the tissue. CartoCell enables the quantification of geometric and packing features at the cellular level. Our single-cell cartography approach then maps the distribution of these features on 2D plots and 3D surface maps, revealing cell morphology patterns in epithelial cysts. Additionally, we show that CartoCell can be adapted to other types of epithelial tissues.This work is supported by the project PID2019-103900GB-I00 funded by MCIN/AEI /10.13039/501100011033 and Programa Operativo FEDER Andalucía 2014–2020 (US-1380953) to L.M.E. Work by L.M.E. and J.A.A.-S.R. has been funded by the Junta de Andalucía (Consejerı´a de economı´a, conocimiento, empresas y Universidad) grant PY18-631 co-funded by FEDER funds. A.T. has been funded by a ‘‘Contrato predoctoral PIF’’ from Universidad de Sevilla. C.G.-V. has been funded by a ‘‘Contrato predoctoral para la formacio´ n de doctores’’ BES-2017-082306. G.B. was supported by a Comunidad de Madrid contract (CAM) and by an FPI grant from MINECO (BES-2022-077789). F.M.-B. was supported by MICINN (PID2020-120367GB-I00) and Fundacio´ n Ramo´ n Areces (CIVP18A3904). P.G.-G. has been funded by Margarita Salas Fellowship – NextGenerationEU. C.H.F.-E. has been funded by Marı´a Zambrano Fellowship – NextGenerationEU. I.A.-C. would like to acknowledge that his work has been partially supported by the University of the Basque Country UPV/EHU grant GIU19/027 and by grant PID2021-126701OB-I00, funded by MCIN/AEI/10.13039/501100011033 and by ‘‘ERDF A way of making Europe." L.M.E. also wants to thank PIE-202120E047 – Conexiones-Life network for networking and input

    CartoCell, a high-content pipeline for 3D image analysis, unveils cell morphology patterns in epithelia

    Get PDF
    Decades of research have not yet fully explained the mechanisms of epithelial self-organization and 3D packing. Single-cell analysis of large 3D epithelial libraries is crucial for understanding the assembly and function of whole tissues. Combining 3D epithelial imaging with advanced deep-learning segmentation methods is essential for enabling this high-content analysis. We introduce CartoCell, a deep-learning-based pipeline that uses small datasets to generate accurate labels for hundreds of whole 3D epithelial cysts. Our method detects the realistic morphology of epithelial cells and their contacts in the 3D structure of the tissue. CartoCell enables the quantification of geometric and packing features at the cellular level. Our single-cell cartography approach then maps the distribution of these features on 2D plots and 3D surface maps, revealing cell morphology patterns in epithelial cysts. Additionally, we show that CartoCell can be adapted to other types of epithelial tissues
    corecore