443 research outputs found

    First measurement of the K−n →Λπ−non-resonant transition amplitude below threshold

    Get PDF
    We present the analysis of K−absorption processes on He4 leading to Λπ−final states, measured with the KLOE spectrometer at the DAΊNE e+e−collider and extract, for the first time, the modulus of the non-resonant K−n →Λπ−direct production amplitude about 33 MeV below the K‟N threshold. This analysis also allows to disentangle the K−nuclear absorption at-rest from the in-flight capture, for K−momenta of about 120 MeV. The data are interpreted with the help of a phenomenological model, and the modulus of the non-resonant K−n →Λπ−amplitude for K−absorption at-rest is found to be |AK−n→Λπ−|=(0.334±0.018stat−0.058+0.034syst)fm

    Determination of ππ\pi\pi scattering lengths from measurement of π+π−\pi^+\pi^- atom lifetime

    Get PDF
    The DIRAC experiment at CERN has achieved a sizeable production of π+π−\pi^+\pi^- atoms and has significantly improved the precision on its lifetime determination. From a sample of 21227 atomic pairs, a 4% measurement of the S-wave ππ\pi\pi scattering length difference ∣a0−a2∣=(.0.2533−0.0078+0.0080∣stat.−0.0073+0.0078∣syst)Mπ+−1|a_0-a_2| = (.0.2533^{+0.0080}_{-0.0078}|_\mathrm{stat}.{}^{+0.0078}_{-0.0073}|_\mathrm{syst})M_{\pi^+}^{-1} has been attained, providing an important test of Chiral Perturbation Theory.Comment: 6 pages, 6 figure

    Detection of π+π−\pi^+\pi^-atoms with the DIRAC spectrometer at CERN

    Full text link
    The goal of the DIRAC experiment at CERN is to measure with high precision the lifetime of the π+π−\pi^+\pi^- atom (A2πA_{2\pi}), which is of order 3×10−153\times10^{-15} s, and thus to determine the s-wave ππ\pi\pi-scattering lengths difference ∣a0−a2∣|a_{0}-a_{2}|. A2πA_{2\pi} atoms are detected through the characteristic features of π+π−\pi^+\pi^- pairs from the atom break-up (ionization) in the target. We report on a first high statistics atomic data sample obtained from p Ni interactions at 24 GeV/cc proton momentum and present the methods to separate the signal from the background.Comment: 19 pages, 12 figures, 1 tabl

    DIRAC: A High Resolution Spectrometer for Pionium Detection

    Full text link
    The DIRAC spectrometer has been commissioned at CERN with the aim of detecting π+π−\pi^+ \pi^- atoms produced by a 24 GeV/cc high intensity proton beam in thin foil targets. A challenging apparatus is required to cope with the high interaction rates involved, the triggering of pion pairs with very low relative momentum, and the measurement of the latter with resolution around 0.6 MeV/cc. The general characteristics of the apparatus are explained and each part is described in some detail. The main features of the trigger system, data-acquisition, monitoring and setup performances are also given.Comment: 49 pages, 37 figures. Figures 1, 2, 5 and 28 are removed because of size limitations imposed by hep-ex. They don't offer essential information. Latex class file 'elsart.cls' also provide

    First measurement of the π+π−\pi^+\pi^- atom lifetime

    Get PDF
    The goal of the DIRAC experiment at CERN (PS212) is to measure the π+π−\pi^+\pi^- atom lifetime with 10% precision. Such a measurement would yield a precision of 5% on the value of the SS-wave ππ\pi\pi scattering lengths combination ∣a0−a2∣|a_0-a_2|. Based on part of the collected data we present a first result on the lifetime, τ=[2.91−0.62+0.49]×10−15\tau=[2.91 ^{+0.49}_{-0.62}]\times 10^{-15} s, and discuss the major systematic errors. This lifetime corresponds to ∣a0−a2∣=0.264−0.020+0.033mπ−1|a_0-a_2|=0.264 ^{+0.033}_{-0.020} m_{\pi}^{-1}.Comment: 18 pages, 6 figure

    Evidence for πK\pi K-atoms with DIRAC

    Get PDF
    We present evidence for the first observation of electromagnetically bound π±K∓\pi^\pm K^\mp-pairs (πK\pi K-atoms) with the DIRAC experiment at the CERN-PS. The πK\pi K-atoms are produced by the 24 GeV/c proton beam in a thin Pt-target and the π±\pi^\pm and K∓K^\mp-mesons from the atom dissociation are analyzed in a two-arm magnetic spectrometer. The observed enhancement at low relative momentum corresponds to the production of 173 ±\pm 54 πK\pi K-atoms. The mean life of πK\pi K-atoms is related to the s-wave πK\pi K-scattering lengths, the measurement of which is the goal of the experiment. From these first data we derive a lower limit for the mean life of 0.8 fs at 90% confidence level.Comment: 15 pages, 9 figure

    First measurement of Ξc0 production in pp collisions at s=7 TeV

    Get PDF
    The production of the charm-strange baryon Csi0c is measured for the first time at the LHC via its semileptonic decay into e+Csi-Îœe in pp collisions at sqrt(s) = 7 TeV with the ALICE detector. The transverse momentum (pT) differential cross section multiplied by the branching ratio is presented in the interval 1 < pT < 8 GeV/c at mid-rapidity, |y| < 0.5. The transverse momentum dependence of the Csi0c baryon production relative to the D0 meson production is compared to predictions of event generators with various tunes of the hadronisation mechanism, which are found to underestimate the measured cross- section ratio.The production of the charm-strange baryon Csi0c is measured for the first time at the LHC via its semileptonic decay into e+Csi-Îœe in pp collisions at sqrt(s) = 7 TeV with the ALICE detector. The transverse momentum (pT) differential cross section multiplied by the branching ratio is presented in the interval 1 < pT < 8 GeV/c at mid-rapidity, |y| < 0.5. The transverse momentum dependence of the Csi0c baryon production relative to the D0 meson production is compared to predictions of event generators with various tunes of the hadronisation mechanism, which are found to underestimate the measured cross- section ratio

    First measurement of the |t|-dependence of coherent J/ψ photonuclear production

    Get PDF

    Elliptic and triangular flow of (anti)deuterons in Pb-Pb collisions at sNN =5.02 TeV

    Get PDF
    The measurements of the (anti)deuteron elliptic flow (v2) and the first measurements of triangular flow (v3) in Pb-Pb collisions at a center-of-mass energy per nucleon-nucleon collision √sNN = 5.02 TeV are presented. A mass ordering at low transverse momentum (pT) is observed when comparing these measurements with those of other identified hadrons, as expected from relativistic hydrodynamics. The measured (anti)deuteron v2 lies between the predictions from the simple coalescence and blast-wave models, which provide a good description of the data only for more peripheral and for more central collisions, respectively. The mass number scaling, which is violated for v2, is approximately valid for the (anti)deuterons v3. The measured v2 and v3 are also compared with the predictions from a coalescence approach with phase-space distributions of nucleons generated by IEBEVISHNU with AMPT initial conditions coupled with URQMD, and from a dynamical model based on relativistic hydrodynamics coupled to the hadronic afterburner SMASH. The model predictions are consistent with the data within the uncertainties in midcentral collisions, while a deviation is observed in the most central collisions
    • 

    corecore