72 research outputs found

    The associations between the response efficacy and objective and subjective change in physical activity and diet in the Information and Risk Modification trial

    Get PDF
    Objectives: Many health promotion campaigns and interventions focussing on improving health-related behaviours have been based on targeting response efficacy. This is based on the assumption that response efficacy is an important modifiable determinant of behaviour change. This study aimed to quantify the association between response efficacy and objective and subjective measures of physical activity and diet. Study design: Prospective cohort analysis of data from a randomised controlled trial. Methods: A total of 953 participants were assessed for response efficacy at baseline and 12 weeks following randomisation to interventions to increase physical activity and improve diet. Subjective measures were collected via a self-report questionnaire that included two questions used to derive the Cambridge Index of physical activity and questions about daily or weekly fruit and vegetable, whole grain, meat and fish intake, based on the dietary guidelines to lower cardiovascular risk. Objective measures were quantified using accelerometers and plasma carotenoids. Results: The mean change in response efficacy for physical activity was +0.5 (standard deviation SD 2.0) and for diet was +0.5 (SD 2.1).There were no clinically or statistically significant associations between baseline or change in response efficacy and objective and subjective measures of physical activity or objective measures of diet. There was a small statistically significant association between baseline response efficacy and change in self-reported wholegrain consumption, but this is unlikely to be clinically significant. Conclusions: Response efficacy is not a fundamental determinant of diet and physical activity and should not be the main focus of interventions targeting these behaviours. © 2018 The Author(s

    Risk accuracy of type 2 diabetes in middle aged adults: Associations with sociodemographic, clinical, psychological and behavioural factors

    Get PDF
    Objective To identify the proportion of individuals with an accurate perception of their risk of type 2 diabetes (T2D) prior to, immediately after and eight weeks after receiving a personalised risk estimate. Additionally, we aimed to explore what factors are associated with underestimation and overestimation immediately post-intervention. Methods Cohort study based on the data collected in the Diabetes Risk Communication Trial. We included 379 participants (mean age 48.9 (SD 7.4) years; 55.1 women) who received a genotypic or phenotypic risk estimate for T2D. Results While only 1.3 of participants perceived their risk accurately at baseline, this increased to 24.7 immediately after receiving a risk estimate and then dropped to 7.3 at eight weeks. Those who overestimated their risk at baseline continued to overestimate it, whereas those who underestimated their risk at baseline improved their risk accuracy. We did not identify any other characteristics associated with underestimation or overestimation immediately after receiving a risk estimate. Conclusion Understanding a received risk estimate is challenging for most participants with many continuing to have inaccurate risk perception after receiving the estimate. Practice implications Individuals who overestimate or underestimate their T2D risk before receiving risk information might require different approaches for altering their risk perception. © 2017 The Author

    Effect of interventions incorporating personalised cancer risk information on intentions and behaviour: A systematic review and meta-analysis of randomised controlled trials

    Get PDF
    Objective To provide a comprehensive review of the impact on intention to change health-related behaviours and health-related behaviours themselves, including screening uptake, of interventions incorporating information about cancer risk targeted at the general adult population. Design A systematic review and random-effects meta-analysis. Data sources An electronic search of MEDLINE, EMBASE, CINAHL and PsycINFO from 1 January 2000 to 1 July 2017. Inclusion criteria Randomised controlled trials of interventions including provision of a personal estimate of future cancer risk based on two or more non-genetic variables to adults recruited from the general population that include at least one behavioural outcome. Results We included 19 studies reporting 12 outcomes. There was significant heterogeneity in interventions and outcomes between studies. There is evidence that interventions incorporating personalised cancer risk information do not affect intention to attend or attendance at screening (relative risk 1.00 (0.97-1.03)). There is limited evidence that they increase smoking abstinence, sun protection, adult skin self-examination and breast examination, and decrease intention to tan. However, they do not increase smoking cessation, parental child skin examination or intention to protect skin. No studies assessed changes in diet, alcohol consumption or physical activity. Conclusions Interventions incorporating personalised cancer risk information do not affect uptake of screening, but there is limited evidence of effect on some health-related behaviours. Further research, ideally including objective measures of behaviour, is needed before cancer risk information is incorporated into routine practice for health promotion in the general population. Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted

    A community jury study exploring the public acceptability of using risk stratification to determine eligibility for cancer screening

    Get PDF
    Introduction Using risk stratification to determine eligibility for cancer screening is likely to improve the efficiency of screening programmes by targeting resources towards those most likely to benefit. We aimed to explore the implications of this approach from a societal perspective by understanding public views on the most acceptable stratification strategies. Methods We conducted three online community juries with 9 or 10 participants in each. Participants were purposefully sampled by age (40–79 years), sex, ethnicity, social grade and English region. On the first day, participants were informed of the potential benefits and harms of cancer screening and the implications of different ways of introducing stratification using scenarios based on phenotypic and genetic risk scores. On the second day, participants deliberated to reach a verdict on the research question, ‘Which approach(es) to inviting people to screening are acceptable, and under what circumstances?’ Deliberations and feedback were recorded and analysed using thematic analysis. Results Across the juries, the principle of risk stratification was generally considered to be an acceptable approach for determining eligibility for screening. Disregarding increasing capacity, the participants considered it to enable efficient resource allocation to high-risk individuals and could see how it might help to save lives. However, there were concerns regarding fair implementation, particularly how the risk assessment would be performed at scale and how people at low risk would be managed. Some favoured using the most accurate risk prediction model whereas others thought that certain risk factors should be prioritized (particularly factors considered as non-modifiable and relatively stable, such as genetics and family history). Transparently justifying the programme and public education about cancer risk emerged as important contributors to acceptability. Conclusion Using risk stratification to determine eligibility for cancer screening was acceptable to informed members of the public, particularly if it included risk factors they considered fair and when communicated transparently. Patient or Public Contribution Two patient and public involvement representatives were involved throughout this study. They were not involved in synthesizing the results but contributed to producing study materials, co-facilitated the community juries and commented on the interpretation of the findings and final report

    Measurement of the Charged Multiplicities in b, c and Light Quark Events from Z0 Decays

    Full text link
    Average charged multiplicities have been measured separately in bb, cc and light quark (u,d,su,d,s) events from Z0Z^0 decays measured in the SLD experiment. Impact parameters of charged tracks were used to select enriched samples of bb and light quark events, and reconstructed charmed mesons were used to select cc quark events. We measured the charged multiplicities: nˉuds=20.21±0.10(stat.)±0.22(syst.)\bar{n}_{uds} = 20.21 \pm 0.10 (\rm{stat.})\pm 0.22(\rm{syst.}), nˉc=21.28±0.46(stat.)0.36+0.41(syst.)\bar{n}_{c} = 21.28 \pm 0.46(\rm{stat.}) ^{+0.41}_{-0.36}(\rm{syst.}) nˉb=23.14±0.10(stat.)0.37+0.38(syst.)\bar{n}_{b} = 23.14 \pm 0.10(\rm{stat.}) ^{+0.38}_{-0.37}(\rm{syst.}), from which we derived the differences between the total average charged multiplicities of cc or bb quark events and light quark events: Δnˉc=1.07±0.47(stat.)0.30+0.36(syst.)\Delta \bar{n}_c = 1.07 \pm 0.47(\rm{stat.})^{+0.36}_{-0.30}(\rm{syst.}) and Δnˉb=2.93±0.14(stat.)0.29+0.30(syst.)\Delta \bar{n}_b = 2.93 \pm 0.14(\rm{stat.})^{+0.30}_{-0.29}(\rm{syst.}). We compared these measurements with those at lower center-of-mass energies and with perturbative QCD predictions. These combined results are in agreement with the QCD expectations and disfavor the hypothesis of flavor-independent fragmentation.Comment: 19 pages LaTex, 4 EPS figures, to appear in Physics Letters

    Volume I. Introduction to DUNE

    Get PDF
    The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay—these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. The Deep Underground Neutrino Experiment (DUNE) is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector technical design report (TDR) describes the DUNE physics program and the technical designs of the single- and dual-phase DUNE liquid argon TPC far detector modules. This TDR is intended to justify the technical choices for the far detector that flow down from the high-level physics goals through requirements at all levels of the Project. Volume I contains an executive summary that introduces the DUNE science program, the far detector and the strategy for its modular designs, and the organization and management of the Project. The remainder of Volume I provides more detail on the science program that drives the choice of detector technologies and on the technologies themselves. It also introduces the designs for the DUNE near detector and the DUNE computing model, for which DUNE is planning design reports. Volume II of this TDR describes DUNE\u27s physics program in detail. Volume III describes the technical coordination required for the far detector design, construction, installation, and integration, and its organizational structure. Volume IV describes the single-phase far detector technology. A planned Volume V will describe the dual-phase technology

    The spectral energy distribution of fermi bright blazars

    Get PDF
    We have conducted a detailed investigation of the broadband spectral properties of the γ-ray selected blazars of the Fermi LAT Bright AGN Sample (LBAS). By combining our accurately estimated Fermi γ-ray spectra with Swift, radio, infra-red, optical, and other hard X-ray/γ-ray data, collected within 3 months of the LBAS data taking period, we were able to assemble high-quality and quasi-simultaneous spectral energy distributions (SED) for 48 LBAS blazars. The SED of these γ-ray sources is similar to that of blazars discovered at other wavelengths, clearly showing, in the usual log ν-log ν Fν representation, the typical broadband spectral signatures normally attributed to a combination of low-energy synchrotron radiation followed by inverse Compton emission of one or more components. We have used these SED to characterize the peak intensity of both the low- and the high-energy components. The results have been used to derive empirical relationships that estimate the position of the two peaks from the broadband colors (i.e., the radio to optical, αro, and optical to X-ray, αox, spectral slopes) and from the γ-ray spectral index. Our data show that the synchrotron peak frequency (νSpeak) is positioned between 1012.5 and 1014.5 Hz in broad-lined flat spectrum radio quasars (FSRQs) and between 10 13 and 1017 Hz in featureless BL Lacertae objects. We find that the γ-ray spectral slope is strongly correlated with the synchrotron peak energy and with the X-ray spectral index, as expected at first order in synchrotron-inverse Compton scenarios. However, simple homogeneous, one-zone, synchrotron self-Compton (SSC) models cannot explain most of our SED, especially in the case of FSRQs and low energy peaked (LBL) BL Lacs. More complex models involving external Compton radiation or multiple SSC components are required to reproduce the overall SED and the observed spectral variability. While more than 50% of known radio bright high energy peaked (HBL) BL Lacs are detected in the LBAS sample, only less than 13% of known bright FSRQs and LBL BL Lacs are included. This suggests that the latter sources, as a class, may be much fainter γ-ray emitters than LBAS blazars, and could in fact radiate close to the expectations of simple SSC models. We categorized all our sources according to a new physical classification scheme based on the generally accepted paradigm for Active Galactic Nuclei and on the results of this SED study. Since the LAT detector is more sensitive to flat spectrum γ-ray sources, the correlation between νSpeak and γ-ray spectral index strongly favors the detection of high energy peaked blazars, thus explaining the Fermi overabundance of this type of sources compared to radio and EGRET samples. This selection effect is similar to that experienced in the soft X-ray band where HBL BL Lacs are the dominant type of blazars. © 2010 The American Astronomical Society

    Effects of rare kidney diseases on kidney failure: a longitudinal analysis of the UK National Registry of Rare Kidney Diseases (RaDaR) cohort

    Get PDF
    Background Individuals with rare kidney diseases account for 5–10% of people with chronic kidney disease, but constitute more than 25% of patients receiving kidney replacement therapy. The National Registry of Rare Kidney Diseases (RaDaR) gathers longitudinal data from patients with these conditions, which we used to study disease progression and outcomes of death and kidney failure. Methods People aged 0–96 years living with 28 types of rare kidney diseases were recruited from 108 UK renal care facilities. The primary outcomes were cumulative incidence of mortality and kidney failure in individuals with rare kidney diseases, which were calculated and compared with that of unselected patients with chronic kidney disease. Cumulative incidence and Kaplan–Meier survival estimates were calculated for the following outcomes: median age at kidney failure; median age at death; time from start of dialysis to death; and time from diagnosis to estimated glomerular filtration rate (eGFR) thresholds, allowing calculation of time from last eGFR of 75 mL/min per 1·73 m2 or more to first eGFR of less than 30 mL/min per 1·73 m2 (the therapeutic trial window). Findings Between Jan 18, 2010, and July 25, 2022, 27 285 participants were recruited to RaDaR. Median follow-up time from diagnosis was 9·6 years (IQR 5·9–16·7). RaDaR participants had significantly higher 5-year cumulative incidence of kidney failure than 2·81 million UK patients with all-cause chronic kidney disease (28% vs 1%; p<0·0001), but better survival rates (standardised mortality ratio 0·42 [95% CI 0·32–0·52]; p<0·0001). Median age at kidney failure, median age at death, time from start of dialysis to death, time from diagnosis to eGFR thresholds, and therapeutic trial window all varied substantially between rare diseases. Interpretation Patients with rare kidney diseases differ from the general population of individuals with chronic kidney disease: they have higher 5-year rates of kidney failure but higher survival than other patients with chronic kidney disease stages 3–5, and so are over-represented in the cohort of patients requiring kidney replacement therapy. Addressing unmet therapeutic need for patients with rare kidney diseases could have a large beneficial effect on long-term kidney replacement therapy demand. Funding RaDaR is funded by the Medical Research Council, Kidney Research UK, Kidney Care UK, and the Polycystic Kidney Disease Charity

    Insights into the high-energy γ-ray emission of Markarian 501 from extensive multifrequency observations in the Fermi era

    Get PDF
    We report on the γ-ray activity of the blazar Mrk 501 during the first 480 days of Fermi operation. We find that the average Large Area Telescope (LAT) γ-ray spectrum of Mrk 501 can be well described by a single power-law function with a photon index of 1.78 ± 0.03. While we observe relatively mild flux variations with the Fermi-LAT (within less than a factor of two), we detect remarkable spectral variability where the hardest observed spectral index within the LAT energy range is 1.52 ± 0.14, and the softest one is 2.51 ± 0.20. These unexpected spectral changes do not correlate with the measured flux variations above 0.3 GeV. In this paper, we also present the first results from the 4.5 month long multifrequency campaign (2009 March 15-August 1) on Mrk 501, which included the Very Long Baseline Array (VLBA), Swift, RXTE, MAGIC, and VERITAS, the F-GAMMA, GASP-WEBT, and other collaborations and instruments which provided excellent temporal and energy coverage of the source throughout the entire campaign. The extensive radio to TeV data set from this campaign provides us with the most detailed spectral energy distribution yet collected for this source during its relatively low activity. The average spectral energy distribution of Mrk 501 is well described by the standard one-zone synchrotron self-Compton (SSC) model. In the framework of this model, we find that the dominant emission region is characterized by a size ≲0.1 pc (comparable within a factor of few to the size of the partially resolved VLBA core at 15-43 GHz), and that the total jet power (≃1044 erg s-1) constitutes only a small fraction (∼10-3) of the Eddington luminosity. The energy distribution of the freshly accelerated radiating electrons required to fit the time-averaged data has a broken power-law form in the energy range 0.3 GeV-10 TeV, with spectral indices 2.2 and 2.7 below and above the break energy of 20 GeV. We argue that such a form is consistent with a scenario in which the bulk of the energy dissipation within the dominant emission zone of Mrk 501 is due to relativistic, proton-mediated shocks. We find that the ultrarelativistic electrons and mildly relativistic protons within the blazar zone, if comparable in number, are in approximate energy equipartition, with their energy dominating the jet magnetic field energy by about two orders of magnitude. © 2011. The American Astronomical Society

    Deep Underground Neutrino Experiment (DUNE), far detector technical design report, volume III: DUNE far detector technical coordination

    Get PDF
    The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay—these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. The Deep Underground Neutrino Experiment (DUNE) is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector technical design report (TDR) describes the DUNE physics program and the technical designs of the single- and dual-phase DUNE liquid argon TPC far detector modules. Volume III of this TDR describes how the activities required to design, construct, fabricate, install, and commission the DUNE far detector modules are organized and managed. This volume details the organizational structures that will carry out and/or oversee the planned far detector activities safely, successfully, on time, and on budget. It presents overviews of the facilities, supporting infrastructure, and detectors for context, and it outlines the project-related functions and methodologies used by the DUNE technical coordination organization, focusing on the areas of integration engineering, technical reviews, quality assurance and control, and safety oversight. Because of its more advanced stage of development, functional examples presented in this volume focus primarily on the single-phase (SP) detector module
    corecore