25 research outputs found
Apelin inhibition prevents resistance and metastasis associated with anti-angiogenic therapy
Angiogenesis is a hallmark of cancer, promoting growth and metastasis. Anti-angiogenic treatment has limited efficacy due to therapy-induced blood vessel alterations, often followed by local hypoxia, tumor adaptation, progression, and metastasis. It is therefore paramount to overcome therapy-induced resistance. We show that Apelin inhibition potently remodels the tumor microenvironment, reducing angiogenesis, and effectively blunting tumor growth. Functionally, targeting Apelin improves vessel function and reduces polymorphonuclear myeloid-derived suppressor cell infiltration. Importantly, in mammary and lung cancer, Apelin prevents resistance to anti-angiogenic receptor tyrosine kinase (RTK) inhibitor therapy, reducing growth and angiogenesis in lung and breast cancer models without increased hypoxia in the tumor microenvironment. Apelin blockage also prevents RTK inhibitor-induced metastases, and high Apelin levels correlate with poor prognosis of anti-angiogenic therapy patients. These data identify a druggable anti-angiogenic drug target that reduces tumor blood vessel densities and normalizes the tumor vasculature to decrease metastases
Apelin inhibition prevents resistance and metastasis associated with anti-angiogenic therapy
Angiogenesis is a hallmark of cancer, promoting growth and metastasis. Anti-angiogenic treatment has limited efficacy due to therapy-induced blood vessel alterations, often followed by local hypoxia, tumor adaptation, progression, and metastasis. It is therefore paramount to overcome therapy-induced resistance. We show that Apelin inhibition potently remodels the tumor microenvironment, reducing angiogenesis, and effectively blunting tumor
growth. Functionally, targeting Apelin improves vessel function and reduces polymorphonuclear myeloid-derived suppressor cell infiltration. Importantly, in mammary and lung cancer, Apelin prevents resistance to anti-angiogenic receptor tyrosine kinase (RTK) inhibitor therapy, reducing growth and angiogenesis in lung
and breast cancer models without increased hypoxia in the tumor microenvironment. Apelin blockage also prevents RTK inhibitorinduced metastases, and high Apelin levels correlate with poor prognosis of anti-angiogenic therapy patients. These data identify a druggable anti-angiogenic drug target that reduces tumor blood vessel densities and normalizes the tumor vasculature to decrease metastases
Regulatory mechanisms of c-Myc and their role in Acute Myeloid Leukemia
The c-Myc transcription factor is a key player in cell homeostasis, being commonly
deregulated in human carcinogenesis. In this PhD thesis we have addressed the question
how regulatory mechanisms restrain the oncogenic activity of c-Myc and its impact on cell
differentiation. In the first half, we report that PML promotes destabilization of c-Myc protein
and re-activation of c-Myc-repressed target genes. The consequent re-expression of the cell
cycle inhibitor CDKN1A/p21 mediates differentiation of leukemic cells. In the second half of
the thesis we identified a novel mechanism of gene regulation by c-Myc, which is mediated
through its interaction with DNA-bound RARα. In undifferentiated cells, c-Myc/Max dimers
cooperate with RARα in the repression of genes required for differentiation. Upon
phosphorylation of c-Myc by the previously identified Pak2, the complex switches from a
repressive to an activating function by releasing Max and recruiting transcriptional coactivators.
These findings add a new and at least partially Max-independent mechanism for
transcriptional regulation by c-Myc and also discover an unexpected function of c-Myc in
inhibiting and promoting cellular differentiation.
Taken together, our results describe two new mechanisms that counteract the oncogenic
activity of c-Myc. Both PML and Pak2 can be considered as tumor suppressors since they
modulate c-Myc function in a way that ultimately promotes differentiation of leukemic cells.
This knowledge provides the basis for novel approaches to be exploited for the development
of c-Myc-targeted therapies.El factor de transcripció c-Myc juga un paper clau en l’homeòstasi cel·lular, essent
freqüentment desregulat en la carcinogènesi humana. En aquesta tesi s’ha estudiat com
diferents mecanismes reguladors poden frenar l’activitat oncogènica de c-Myc i el
subsegüent impacte en la diferenciació cel·lular. A la primera meitat de la tesi, es demostra
que PML promou la desestabilització de la proteïna c-Myc i, en conseqüència, la reactivació
dels genes diana reprimits per c-Myc. Entre aquests gens diana es troba l’inhibidor del cicle
cel·lular CDKN1A/p21, la reexpressió del qual provoca la diferenciació de cèl·lules
leucèmiques induïda per PML. En la segona meitat, s’identifica un nou mecanisme de
regulació transcripcional per part de c-Myc a través de la interacció amb RARα, el qual està
unit a l’ADN. En cèl·lules indiferenciades, els dimers c-Myc/Max cooperen amb RARα en la
repressió de gens essencials per a la diferenciació. Un cop c-Myc és fosforil·lat per la kinasa
Pak2, el complex de c-Myc amb RARα esdevé activador mitjançant la pèrdua de Max i el
reclutament de coactivadors transcripcionals. Aquest descobriment suposa un nou
mecanisme mitjançant el qual c-Myc pot exercicir la regulació gènica almenys en part
independentment de Max, i també revela una funció desconeguda de c-Myc en la inhibició i
promoció de la diferenciació cel·lular.
En conjunt, aquests resultats descriuen dos nous mecanismes que contrarestren l’activitat
oncogènica de c-Myc. PML i Pak2 poden ser considerats supressors de tumors ja que
modulen la funció de c-Myc per a promoure la diferenciació de les cèl·lules leucèmiques.
Aquests descobriments poden utilitzar-se com a base pel desenvolupament de noves
teràpies anti-tumorals que tinguin com a diana la proteïna c-Myc
Regulatory mechanisms of c-Myc and their role in Acute Myeloid Leukemia
The c-Myc transcription factor is a key player in cell homeostasis, being commonly
deregulated in human carcinogenesis. In this PhD thesis we have addressed the question
how regulatory mechanisms restrain the oncogenic activity of c-Myc and its impact on cell
differentiation. In the first half, we report that PML promotes destabilization of c-Myc protein
and re-activation of c-Myc-repressed target genes. The consequent re-expression of the cell
cycle inhibitor CDKN1A/p21 mediates differentiation of leukemic cells. In the second half of
the thesis we identified a novel mechanism of gene regulation by c-Myc, which is mediated
through its interaction with DNA-bound RARα. In undifferentiated cells, c-Myc/Max dimers
cooperate with RARα in the repression of genes required for differentiation. Upon
phosphorylation of c-Myc by the previously identified Pak2, the complex switches from a
repressive to an activating function by releasing Max and recruiting transcriptional coactivators.
These findings add a new and at least partially Max-independent mechanism for
transcriptional regulation by c-Myc and also discover an unexpected function of c-Myc in
inhibiting and promoting cellular differentiation.
Taken together, our results describe two new mechanisms that counteract the oncogenic
activity of c-Myc. Both PML and Pak2 can be considered as tumor suppressors since they
modulate c-Myc function in a way that ultimately promotes differentiation of leukemic cells.
This knowledge provides the basis for novel approaches to be exploited for the development
of c-Myc-targeted therapies.El factor de transcripció c-Myc juga un paper clau en l’homeòstasi cel·lular, essent
freqüentment desregulat en la carcinogènesi humana. En aquesta tesi s’ha estudiat com
diferents mecanismes reguladors poden frenar l’activitat oncogènica de c-Myc i el
subsegüent impacte en la diferenciació cel·lular. A la primera meitat de la tesi, es demostra
que PML promou la desestabilització de la proteïna c-Myc i, en conseqüència, la reactivació
dels genes diana reprimits per c-Myc. Entre aquests gens diana es troba l’inhibidor del cicle
cel·lular CDKN1A/p21, la reexpressió del qual provoca la diferenciació de cèl·lules
leucèmiques induïda per PML. En la segona meitat, s’identifica un nou mecanisme de
regulació transcripcional per part de c-Myc a través de la interacció amb RARα, el qual està
unit a l’ADN. En cèl·lules indiferenciades, els dimers c-Myc/Max cooperen amb RARα en la
repressió de gens essencials per a la diferenciació. Un cop c-Myc és fosforil·lat per la kinasa
Pak2, el complex de c-Myc amb RARα esdevé activador mitjançant la pèrdua de Max i el
reclutament de coactivadors transcripcionals. Aquest descobriment suposa un nou
mecanisme mitjançant el qual c-Myc pot exercicir la regulació gènica almenys en part
independentment de Max, i també revela una funció desconeguda de c-Myc en la inhibició i
promoció de la diferenciació cel·lular.
En conjunt, aquests resultats descriuen dos nous mecanismes que contrarestren l’activitat
oncogènica de c-Myc. PML i Pak2 poden ser considerats supressors de tumors ja que
modulen la funció de c-Myc per a promoure la diferenciació de les cèl·lules leucèmiques.
Aquests descobriments poden utilitzar-se com a base pel desenvolupament de noves
teràpies anti-tumorals que tinguin com a diana la proteïna c-Myc.Programa de doctorat en Biomedicin
Polycomb Regulates NF-κB Signaling in Cancer through miRNA
The mechanisms leading to the constitutive activation of NF-κB in cancers and the pathways upstream and downstream of this activation are not fully understood. In this issue of Cancer Cell, Yamagishi et al. demonstrate that Polycomb-mediated silencing of miR-31 is implicated in the aberrant activation of NF-κB signaling in tumors
Lack of oestrogen protection in amyloid-mediated endothelial damage due to protein nitrotyrosination
Amyloid beta-peptide (Abeta) cytotoxicity, the hallmark of Alzheimer's disease, implicates oxidative stress in both neurons and vascular cells, particularly endothelial cells. Consequently, antioxidants have shown neuroprotective activities against Abeta-induced cytotoxicity. Among the different antioxidants used in both in vitro and in vivo studies, 17beta-oestradiol (E2) has garnered the most attention. Oestrogen attenuated Abeta(E22Q)-induced toxicity in neurons but failed to protect endothelial cells. Here we show that E2-mediated activation of endothelial nitric oxide synthase (eNOS) increases the production of nitric oxide (NO), which, under Abeta(E22Q)-induced oxidative damage, results in the formation of peroxynitrite and increased nitration of tyrosine residues. Inhibition of eNOS prevents nitrotyrosination and permits E2-mediated protection against Abeta(E22Q) on endothelial cells. The main nitrotyrosinated proteins in the presence of E2 and Abeta(E22Q) were identified by MALDI-TOF mass spectrometry. These proteins are key players in the regulation of energy production, cytoskeletal integrity, protein metabolism and protection against oxidative stress. Our data highlight the potential damaging consequences of E2 in vascular disorders dealing with oxidative stress conditions, such as cerebral amyloid angiopathy, stroke and ischaemia-reperfusion conditions
The histone variant macroH2A is an epigenetic regulator of key developmental genes
The histone variants macroH2A1 1 and macroH2A2 are associated with X chromosome inactivation in female mammals. However, the physiological function of macroH2A proteins on autosomes is poorly understood. Microarray-based analysis in human male pluripotent cells uncovered occupancy of both macroH2A variants at many genes encoding key regulators of development and cell fate decisions. On these genes, the presence of macroH2A1+2 is a repressive mark that overlaps locally and functionally with Polycomb repressive complex 2. We demonstrate that macroH2A1+2 contribute to the fine-tuning of temporal activation of HOXA cluster genes during neuronal differentiation. Furthermore, elimination of macroH2A2 function in zebrafish embryos produced severe but specific phenotypes. Taken together, our data demonstrate that macroH2A variants constitute an important epigenetic mark involved in the concerted regulation of gene expression programs during cellular differentiation and vertebrate development.Peer Reviewe
Oxidative stress triggers the amyloidogenic pathway in human vascular smooth muscle cells
Cerebral amyloid angiopathy, associated to most cases of Alzheimer's disease (AD), is characterized by the deposition of amyloid ss-peptide (Ass) in brain vessels, although the origin of the vascular amyloid deposits is still controversial: neuronal versus vascular. In the present work, we demonstrate that primary cultures of human cerebral vascular smooth muscle cells (HC-VSMCs) have all the secretases involved in amyloid ss-protein precursor (APP) cleavage and produce Ass(1-40) and Ass(1-42). Oxidative stress, a key factor in the etiology and pathophysiology of AD, up-regulates ss-site APP cleaving enzyme 1 (BACE1) expression, as well as Ass(1-40) and Ass(1-42) secretion in HC-VSMCs. This process is mediated by c-Jun N-terminal Kinase and p38 MAPK signaling and appears restricted to BACE1 regulation as no changes in the other secretases were observed. In conclusion, oxidative stress-mediated up-regulation of the amyloidogenic pathway in human cerebral vascular smooth muscle cells may contribute to the overall cerebrovascular amyloid angiopathy observed in AD patients
