18 research outputs found

    The large scale magnetic field structure of the spiral galaxy NGC 5775

    Get PDF
    In order to better determine the large-scale 3D-structure of magnetic fields in spiral galaxies we present a Faraday rotation analysis of the edge-on spiral galaxy NGC 5775. Deep radio-continuum observations in total power and linear polarization were performed at 8.46 GHz with the VLA and the 100-m Effelsberg telescope. They were analyzed together with archival 4.86 and 1.49 GHz VLA-data. We thus can derive rotation measures from a comparison of three frequencies and determine the intrinsic magnetic field structure. A very extended halo is detected in NGC 5775, with magnetic field lines forming an X-shaped structure. Close to the galactic disk the magnetic field is plane-parallel. The scaleheights of the radio emission esimated for NGC 5775 are comaprable with other galaxies. The rotation measure distribution varies smoothly on both sides along the major axis from positive to negative values. From the derived distribution of rotation measures and the plane-parallel intrinsic magnetic field orientation along the galactic midplane we conclude that NGC 5775 has an 'even axisymmetric' large-scale magnetic field configuration in the disk as generated by an \alpha \Omega -dynamo which is accompanied by a quadrupolar poloidal field. The magnetic field lines of the plane-parallel component are pointing 'outwards'. The observed X-shaped halo magnetic field, however, cannot be explained by the action of the disk's mean-field dynamo alone. It is probably due to the influence of the galactic wind together with the dynamo action.Comment: 11 pages, 13 figures, A&A accepte

    A large-scale, regular intergalactic magnetic field associated with Stephan's Quintet?

    Full text link
    Regular magnetic fields are frequently found within and in the outskirts of galaxies, but their presence, properties, and origin has not yet been established for galaxy groups. On the basis of broadband radio polarimetric imaging with the Westerbork Synthesis Radio Telescope (WSRT), we made use of Rotation Measure Synthesis to disentangle contributions from magnetic fields on various scales for several polarised radio sources inside, behind, or in the vicinity of the Stephan's Quintet (HCG92, SQ). We recognise the signature of a large-scale, genuinely regular, magnetised screen, seemingly constrained to the Quintet itself. Although we cannot exclude a contribution from the Milky Way, our analysis favours a magnetic structure within the SQ system. If indeed associated with the galaxy group in question, it would span a volume of at least 60×40×20kpc60\,\times\,40\,\times\,20\,\mathrm{kpc} and have a strength at least as high as that previously detected within large spiral galaxies. This field would then surpass the extent of any other known galactic, regular magnetic fields, have a considerable strength of a few microgauss, and would be the first known example of such a structure in a galaxy system other than a galaxy pair. Several other explanations are also presented and evaluated.Comment: 13 pages, 7 figures, 3 table

    3D MHD simulations of magnetic field evolution and radio polarization of barred galaxies

    Get PDF
    Aims. We study numerically the large-scale gas and magnetic field evolution of barred galaxies in the gravitational potential of a disk, bulge, halo, and bar. We solve non-linear MHD equations including the back-reaction of the magnetic field to the gas. We do not take into account any dynamo process. Methods. We apply the numerical MHD code to calculate the model of the galaxy in three dimensions. We construct realistic maps of high-frequency (Faraday rotation free) polarized radio emission on the basis of the simulated magnetic fields. The polarization model includes the effects of projection and limited resolution. Results. The main result is that our modeled polarization maps resemble the radio polarization structures observed in barred galaxies. The modeled polarization B-vectors distribution along the bar and between spiral arms resembles the observed topology of the magnetic field in barred galaxies. Our calculations for several different rotational velocities and sound speeds give the same result we got in our previous earlier published model. The reason of this behaviour is the dynamical evolution of the bar that causes gas to form spiral waves going radially outward. A gaseous spiral arms in turn generates magnetic ones, which live much longer in the inter-arm disk space than the gaseous pattern

    Magnetic fields and hot gas in M 101

    Get PDF
    Context. Studies of nearby spiral galaxies in radio and X-ray wavelengths reveal the structure and energy balance of the magnetic fields and the hot interstellar medium (ISM). In some spiral galaxies, large-scale ordered magnetic fields have been found between the spiral stellar arms (the so-called magnetic arms). One of the considered explanations of their origin is magnetic reconnection, which according to theoretical studies can efficiently heat the low-density ISM. Aims. We present, for the first time, high-resolution C-band (5 GHz) radio maps of the nearby face-on spiral galaxy M 101 to study the magnetic fields and verify the existence of the magnetic arms. The analysis of the archival XMM-Newton X-ray data is performed to search for signatures of gas heating by magnetic reconnection effects in the disk and the halo of this galaxy. Methods. We combine the Very Large Array (VLA) and Effelsberg radio maps of M 101 to restore the large-scale emission lost in the interferometric observations. From the obtained maps, we derive magnetic field strengths and energy densities, and compare them with the properties of the hot gas found with the spectral analysis of the X-ray data. Results. Most of the X-ray emission likely comes from the hot gas in the halo of M 101. Its temperature is highest above the massive stellar arm and an inter-arm region with enhanced polarised radio emission, as well as in the inter-arm area where neither Hα nor H 

    Hot magnetic halo of NGC 628 (M 74)

    Get PDF
    Context. In several spiral galaxies that are observed face-on, large-scale ordered magnetic fields (the so-called magnetic arms) were found. One of the explanations was the action of the magnetic reconnection, which leads to a higher ordering of the magnetic fields. Because it simultaneously converts the energy of the magnetic fields into thermal energy of the surroundings, magnetic reconnection has been considered as a heating mechanism of the interstellar medium for many years. Until recently, no clear observational evidence for this phenomenon was found. Aims. We search for possible signatures of gas heating by magnetic reconnection effects in the radio and X-ray data for the face-on spiral galaxy NGC 628 (M 74), which presents pronounced magnetic arms and evidence for vertical magnetic fields. Methods. The strengths and energy densities of the magnetic field in the spiral and magnetic arms were derived, as were the temperatures and thermal energy densities of the hot gas, for the disk and halo emission. Results. In the regions of magnetic arms, higher order and lower energy density of the magnetic field is found than in the stellar spiral arms. The global temperature of the hot gas is roughly constant throughout the disk. Conclusions. The comparison of the findings with those obtained for the starburst galaxy M 83 suggests that magnetic reconnection heating may be present in the halo of NGC 628. The joint analysis of the properties of the magnetic fields and the hot gas in NGC 628 also provided clues for possible tidal interaction with the companion galaxy

    Large-scale magnetized outflows from the Virgo Cluster spiral NGC 4569 : a galactic wind in a ram pressure wind

    Get PDF
    Using the Effelsberg radio telescope at 4.85 GHz and 8.35 GHz we discovered large symmetric lobes of polarized radio emission around the strongly H

    The First Post-Kepler Brightness Dips of KIC 8462852

    Get PDF
    We present a photometric detection of the first brightness dips of the unique variable star KIC 8462852 since the end of the Kepler space mission in 2013 May. Our regular photometric surveillance started in October 2015, and a sequence of dipping began in 2017 May continuing on through the end of 2017, when the star was no longer visible from Earth. We distinguish four main 1-2.5% dips, named "Elsie," "Celeste," "Skara Brae," and "Angkor", which persist on timescales from several days to weeks. Our main results so far are: (i) there are no apparent changes of the stellar spectrum or polarization during the dips; (ii) the multiband photometry of the dips shows differential reddening favoring non-grey extinction. Therefore, our data are inconsistent with dip models that invoke optically thick material, but rather they are in-line with predictions for an occulter consisting primarily of ordinary dust, where much of the material must be optically thin with a size scale <<1um, and may also be consistent with models invoking variations intrinsic to the stellar photosphere. Notably, our data do not place constraints on the color of the longer-term "secular" dimming, which may be caused by independent processes, or probe different regimes of a single process

    The First Post-Kepler Brightness Dips of KIC 8462852

    Full text link
    corecore