99 research outputs found

    Local axonal morphology guides the topography of interneuron myelination in mouse and human neocortex

    Get PDF
    GABAergic fast-spiking parvalbumin-positive (PV) interneurons are frequently myelinated in the cerebral cortex. However, the factors governing the topography of cortical interneuron myelination remain incompletely understood. Here, we report that segmental myelination along neocortical interneuron axons is strongly predicted by the joint combination of interbranch distance and local axon caliber. Enlargement of PV+ interneurons increased axonal myelination, while reduced cell size led to decreased myelination. Next, we considered regular-spiking SOM+ cells, which normally have relatively shorter interbranch distances and thinner axon diameters than PV+ cells, and are rarely myelinated. Consistent with the importance of axonal morphology for guiding interneuron myelination, enlargement of SOM+ cell size dramatically increased the frequency of myelinated axonal segments. Lastly, we confirm that these findings also extend to human neocortex by quantifying interneuron axonal myelination from ex vivo surgical tissue. Together, these findings establish a predictive model of neocortical GABAergic interneuron myelination determined by 42 local axonal morphology

    Postsynaptic GABA<sub>B</sub>Rs Inhibit L-Type Calcium Channels and Abolish Long-Term Potentiation in Hippocampal Somatostatin Interneurons

    Get PDF
    Summary: Inhibition provided by local GABAergic interneurons (INs) activates ionotropic GABAA and metabotropic GABAB receptors (GABABRs). Despite GABABRs representing a major source of inhibition, little is known of their function in distinct IN subtypes. Here, we show that, while the archetypal dendritic-inhibitory somatostatin-expressing INs (SOM-INs) possess high levels of GABABR on their somato-dendritic surface, they fail to produce significant postsynaptic inhibitory currents. Instead, GABABRs selectively inhibit dendritic CaV1.2 (L-type) Ca2+ channels on SOM-IN dendrites, leading to reduced calcium influx and loss of long-term potentiation at excitatory input synapses onto these INs. These data provide a mechanism by which GABABRs can contribute to disinhibition and control the efficacy of extrinsic inputs to hippocampal networks. : Booker et al. show that GABAB receptors are highly expressed on somatostatin interneuron dendrites. Rather than activating Kir3 channels, they preferentially co-cluster with, and negatively couple to, L-type calcium channels inhibiting long-term potentiation at excitatory inputs. Keywords: GABAergic interneurons, feedback inhibition, GABAB receptors, dendrites, Cav1.2 channels, synaptic plasticity, hippocampus, electron microscopy, whole-cell recording, multi-photon imagin

    Behavioral-state modulation of inhibition is context-dependent and cell type specific in mouse visual cortex

    Get PDF
    Cortical responses to sensory stimuli are modulated by behavioral state. In the primary visual cortex (V1), visual responses of pyramidal neurons increase during locomotion. This response gain was suggested to be mediated through inhibitory neurons, resulting in the disinhibition of pyramidal neurons. Using in vivo two-photon calcium imaging in layers 2/3 and 4 in mouse V1, we reveal that locomotion increases the activity of vasoactive intestinal peptide (VIP), somatostatin (SST) and parvalbumin (PV)-positive interneurons during visual stimulation, challenging the disinhibition model. In darkness, while most VIP and PV neurons remained locomotion responsive, SST and excitatory neurons were largely non-responsive. Context-dependent locomotion responses were found in each cell type, with the highest proportion among SST neurons. These findings establish that modulation of neuronal activity by locomotion is context-dependent and contest the generality of a disinhibitory circuit for gain control of sensory responses by behavioral state. DOI: http://dx.doi.org/10.7554/eLife.14985.00

    The Brain-Specific Beta4 Subunit Downregulates BK Channel Cell Surface Expression

    Get PDF
    The large-conductance K+ channel (BK channel) can control neural excitability, and enhanced channel currents facilitate high firing rates in cortical neurons. The brain-specific auxiliary subunit β4 alters channel Ca++- and voltage-sensitivity, and β4 knock-out animals exhibit spontaneous seizures. Here we investigate β4's effect on BK channel trafficking to the plasma membrane. Using a novel genetic tag to track the cellular location of the pore-forming BKα subunit in living cells, we find that β4 expression profoundly reduces surface localization of BK channels via a C-terminal ER retention sequence. In hippocampal CA3 neurons from C57BL/6 mice with endogenously high β4 expression, whole-cell BK channel currents display none of the characteristic properties of BKα+β4 channels observed in heterologous cells. Finally, β4 knock-out animals exhibit a 2.5-fold increase in whole-cell BK channel current, indicating that β4 also regulates current magnitude in vivo. Thus, we propose that a major function of the brain-specific β4 subunit in CA3 neurons is control of surface trafficking

    Morphological Diversity and Connectivity of Hippocampal Interneurons

    Get PDF

    GABAAR-mediated tonic inhibition differentially modulates intrinsic excitability of VIP- and SST- expressing interneurons in layers 2/3 of the somatosensory cortex.

    No full text
    data published in the manuscript with the same title: Bogaj K, Kaplon R, Urban-Ciecko J. GABAAR-mediated tonic inhibition differentially modulates intrinsic excitability of VIP- and SST- expressing interneurons in layers 2/3 of the somatosensory cortex. Front Cell Neurosci. 2023 Oct 12;17:1270219. doi: 10.3389/fncel.2023.1270219. PMID: 37900589; PMCID: PMC10602639

    Somatostatin-expressing interneurons modulate neocortical network through GABAb receptors in a synapse-specific manner

    No full text
    Abstract The firing activity of somatostatin-expressing inhibitory neurons (SST-INs) can suppress network activity via both GABAa and GABAb receptors (Rs). Although SST-INs do not receive GABAaR input from other SST-INs, it is possible that SST-IN-released GABA could suppress the activity of SST-INs themselves via GABAbRs, providing a negative feedback loop. Here we characterized the influence of GABAbR modulation on SST-IN activity in layer 2/3 of the somatosensory cortex in mice. We compared this to the effects of GABAbR activation on parvalbumin-expressing interneurons (PV-INs). Using in vitro whole-cell patch clamp recordings, pharmacological and optogenetic manipulations, we found that the firing activity of SST-INs suppresses excitatory drive to themselves via presynaptic GABAbRs. Postsynaptic GABAbRs did not influence SST-IN spontaneous activity or intrinsic excitability. Although GABAbRs at pre- and postsynaptic inputs to PV-INs are modestly activated during cortical network activity in vitro, the spontaneous firing of SST-INs was not the source of GABA driving this GABAbR activation. Thus, SST-IN firing regulates excitatory synaptic strength through presynaptic GABAbRs at connections between pyramidal neurons (Pyr-Pyr) and synapses between pyramidal neurons and SST-INs (Pyr-SST), but not Pyr-PV and PV-Pyr synapses. Our study indicates that two main types of neocortical inhibitory interneurons are differentially modulated by SST-IN-mediated GABA release

    Presentation_1_GABAAR-mediated tonic inhibition differentially modulates intrinsic excitability of VIP- and SST- expressing interneurons in layers 2/3 of the somatosensory cortex.PPTX

    No full text
    Extrasynaptic GABAA receptors (GABAARs) mediating tonic inhibition are thought to play an important role in the regulation of neuronal excitability. However, little is known about a cell type-specific tonic inhibition in molecularly distinctive types of GABAergic interneurons in the mammalian neocortex. Here, we used whole-cell patch-clamp techniques in brain slices prepared from transgenic mice expressing red fluorescent protein (TdTomato) in vasoactive intestinal polypeptide- or somatostatin- positive interneurons (VIP-INs and SST-INs, respectively) to investigate tonic and phasic GABAAR-mediated inhibition as well as effects of GABAA inhibition on intrinsic excitability of these interneurons in layers 2/3 (L2/3) of the somatosensory (barrel) cortex. We found that tonic inhibition was stronger in VIP-INs compared to SST-INs. Contrary to the literature data, tonic inhibition in SST-INs was comparable to pyramidal (Pyr) neurons. Next, tonic inhibition in both interneuron types was dependent on the activity of delta subunit-containing GABAARs. Finally, the GABAAR activity decreased intrinsic excitability of VIP-INs but not SST-INs. Altogether, our data indicate that GABAAR-mediated inhibition modulates neocortical interneurons in a type-specific manner. In contrast to L2/3 VIP-INs, intrinsic excitability of L2/3 SST-INs is immune to the GABAAR-mediated inhibition.</p

    Precisely timed nicotinic activation drives SST inhibition in neocortical circuits

    No full text
    Sleep, waking, locomotion, and attention are associated with cell-type-specific changes in neocortical activity. The effect of brain state on circuit output requires understanding of how neuromodulators influence specific neuronal classes and their synapses, with normal patterns of neuromodulator release from endogenous sources. We investigated the state-dependent modulation of a ubiquitous feedforward inhibitory motif in mouse sensory cortex, local pyramidal (Pyr) inputs onto somatostatin (SST)-expressing interneurons. Paired whole-cell recordings in acute brain slices and in vivo showed that Pyr-to-SST synapses are remarkably weak, with failure rates approaching 80%. Pharmacological screening revealed that cholinergic agonists uniquely enhance synaptic efficacy. Brief, optogenetically gated acetylcholine release dramatically enhanced Pyr-to-SST input, via nicotinic receptors and presynaptic PKA signaling. Importantly, endogenous acetylcholine release preferentially activated nicotinic, not muscarinic, receptors, thus differentiating drug effects from endogenous neurotransmission. Brain state- and synapse-specific unmasking of synapses may be a powerful way to functionally rewire cortical circuits dependent on behavioral demands
    corecore