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Abstract 1 

More than 60 years ago, Geoffrey Harris described his “Neurohumoral theory” in which the 2 

regulation of pituitary hormone secretion was a “simple” hierarchal relationship, with the 3 

hypothalamus as the controller. In models based on this theory, the electrical activity of 4 

hypothalamic neurons determines the release of hypophysiotropic hormones into the portal 5 

circulation and the pituitary simply responds with secretion of a pulse of hormone into the 6 

bloodstream. The development of methodologies allowing monitoring of the activities of 7 

members of the hypothalamic-vascular-pituitary unit is increasingly allowing dissection of the 8 

mechanisms generating hypothalamic and pituitary pulses. These have revealed that whilst 9 

hypothalamic input is required, its role as a driver of pulsatile pituitary hormone secretion 10 

varies between pituitary axes. The organisation of pituitary cells has a key role in modifying 11 

their response to hypophysiotropic factors, which can lead to a memory of previous demand 12 

and enhanced function. Feedback can lead to oscillatory hormone output that is independent of 13 

pulses of hypohysiotropic factors and instead results from the temporal relationship between 14 

pituitary output and target organ response. Thus, the mechanisms underlying the generation of 15 

pulses can not be generalised and the circularity of feedforward and feedback interactions must 16 

be considered to understand both normal physiological function and pathology. We describe 17 

some examples of the clinical implications of the recognition of the importance of the pituitary 18 

and target organs in pulse generation and suggest avenues for future research in both the short 19 

and long-term.   20 

 21 

Précis 22 

Le Tissier and his colleagues revisit Harris's “Neurohumoral theory” to reassess the 23 

contribution of individual components of hypothalamic-pituitary-target organ axes in hormone 24 

pulse generation.  25 
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Introduction 1 

Understanding the origin of anterior pituitary hormone pulses in health and how they are 2 

disturbed in disease is a long-standing question (1). The accepted “textbook” view has been that 3 

hypothalamic hormones are the dominant factors generating these pulses, based largely on the 4 

seminal experiments of Geoffrey Harris and colleagues that led him to develop the 5 

“Neurohormonal Theory” (2).  Over sixty years later, the importance of hypothalamic factors is 6 

still unquestioned, however, it is apparent that their role in pituitary pulse generation is more 7 

complex than previously assumed. It is now clear that no single model system exists and that for 8 

each pituitary axis pulses of hormones are generated by a combination of hypothalamic input 9 

(3), pituitary response (4), short loop feedback (5)  and target organ feedback (6). A clearer 10 

understanding of these interactions allows definition of their orchestration, essential for 11 

understanding the circuitries underlying physiology and behaviour (7). 12 

In this review we will principally consider ultradian pulses of anterior pituitary hormones and 13 

divide their generation into two components: the regulatory inputs to the pituitary, both from 14 

the hypothalamus and peripheral organs; and the response of the pituitary gland. We will use 15 

specific examples to describe the processes and interactions involved and how their 16 

modification may lead to pathology. We will focus on the mechanisms underlying the generation 17 

of ultradian pulses. This review will not address the circadian pattern of pituitary hormone 18 

output: instead the reader is referred to three relevant articles/reviews (8-10).  19 

  20 
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Hypothalamic and target organ input in the generation of pituitary 1 

hormone pulses. 2 

Hypophysiotropic neurons share features with many other neuronal cell types 3 

The parvocellular hypothalamic neurons, which store and secrete hypophysiotropic hormones, 4 

have largely been considered as a separate class of neuron from those in other regions of the 5 

brain that  have traditionally been classified by their small neurotransmitters. This view has 6 

now changed with studies of neurotransmitter contribution to the regulation of neurohormone 7 

release (11,12) and the realisation that many other neuronal circuits can be classified by their 8 

secretion of neuropeptides whether they have (e.g. somatostatin (SST) (13)) or do not have (e.g. 9 

kisspeptin (14) and orexin (15)) a neuroendocrine role. A unique feature of parvocellular 10 

neurons is that they lack post-synaptic targets, however, it has been shown that neuronal (16) 11 

and endothelial cell (17) inputs can modulate GnRH nerve terminal activity  at the median 12 

eminence, similar to retrograde signalling at synaptic terminals. This highlights that the 13 

mechanisms and interactions which regulate hypothalamic parvocellular neurons should not be 14 

considered in any way distinct from those of other brain regions. A further recent realisation is 15 

that neurons considered as single populations may exist as multiple subtypes, which has been 16 

shown by single cell transcriptomics (18,19) and this is also true of hypophysiotropc neurons: 17 

regionally distinct gonadotrophin releasing hormone (GnRH) neurons  have differential roles in 18 

GnRH pulse and surge generation (reviewed in (20));  and functional studies have identified two 19 

types of tuberoinfundibular dopamine (TIDA) neurons, only one of which is responsible for 20 

regulation of prolactin release (21). Further studies are likely to reveal heterogeneity in other 21 

hypophysiotropic neuronal populations with distinct roles in both pituitary regulation and 22 

modification of other hypothalamic functions.    23 

  24 
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Pulsatile hypothalamic output is not required for pulsatility in all pituitary axes  1 

It is becoming increasingly clear that the previously accepted concept of the hypothalamus as 2 

the source of anterior pituitary hormone pulse generation is not applicable to all axes (Figure 3 

1). This concept, of a simple hierarchal pulse generating relationship, is based on seminal 4 

studies in multiple species showing a concordance of the pattern of GnRH output and that of 5 

pituitary luteinising hormone (LH) and follicle stimulating hormone (FSH) (22-24). Afferent 6 

inputs to GnRH neurons are the origin of pulse generation (25), as demonstrated by a series of 7 

extensive and elegant studies of the GnRH system (20). As a consequence, the GnRH system has 8 

provided a paradigm for pulse generation in other pituitary axes, especially where the pattern 9 

of hypothalamic output can not be robustly measured. Identification of the factors regulating 10 

other axes show a further level of complexity, with multiple hypothalamic factors having 11 

synergistic (eg corticotrophin releasing hormone (CRH) and vasopressin (26)) or antagonistic 12 

(eg growth hormone releasing hormone (GHRH) and SST (27)) actions that affect the amplitude 13 

or duration of a pituitary hormone pulse but do not contradict the  hierarchal relationship. 14 

However, recent studies in the adrenal axis has questioned the requirement for pulsatile 15 

hypothalamic input for a corresponding pulsatile pituitary output: constant CRH stimulation in 16 

conscious, freely moving rats resulted in pulsatile adrenocorticotrophic hormone (ACTH) and 17 

corticosterone release with a frequency unaltered from endogenous pulses (28). Similarly, in 18 

the thyroid axis constant infusion of thyrotrophin releasing hormone (TRH) in humans has been 19 

shown to result in pulses of TSH (29). This is not to say that TRH and CRH are not released into 20 

the portal circulation in pulses, where measurement has been made release is pulsatile (30-33) 21 

but this may be more related to maintaining responsiveness of target cells rather than pulse 22 

generation per se (34). Thus the paradigm established by the GnRH-gonadotrophin-sex 23 

hormone relationship (Figure 1 , left) may not hold for other axes, such as CRH-ACTH-cortisol 24 

(Figure 1, right), or indeed fully account for the relationship of GnRH and gonadotroph output at 25 

the time of the LH surge (20). Measurement of other hypophysiotropic factors with sufficient 26 



Pituitary Hormone Pulse Generation  6 

temporal resolution to determine their relationship with pituitary hormone output or 1 

optogenetic manipulation of their hypothalamic neurons are required to determine this.   2 

The electrical activity required for neurohormone release can be defined but is modified 3 

with physiological status 4 

In those pituitary axes where pituitary hormones are released in pulses with a frequency of 10s-5 

100s of minutes, it has not (to date) been possible to directly correlate the patterns of 6 

hypothalamic neuron electrical activity with their hypophysiotropic secretion. Calcium imaging 7 

and optogenetic manipulation to impose electrical activity with concurrent monitoring of 8 

pituitary hormone output (assumed to reflect hypothalamic factor release) have been used as 9 

alternative approaches to determine the minimal frequency and duration required to drive 10 

neurohormone secretion. This has been successfully applied to GnRH neurons, demonstrating 11 

that stimulation at 10 Hz  (but not at frequencies below 5 Hz) are required for a duration of 2 12 

minutes (but not 30 seconds) for generation of LH pulses (35), and to kisspeptin neurons, 13 

identifying them as a source of the GnRH neuron pulse generator (25,36). These studies assume 14 

that electrical activity and neurohormone release are correlated, which is likely in the short 15 

term, however studies of TIDA neuron electrical activity with simultaneous recording of 16 

dopamine output has demonstrated that this may not be true with changes in physiological 17 

status (37). In lactation, prolactin feedback no longer leads to dopamine release from TIDA 18 

neurons, which maintains the high level of the lactogen, but unexpectedly still leads to increased 19 

electrical activity. A similar disconnect between electrical activity and neurohormone release 20 

may occur in kisspeptin neurons which have an altered optogenetic stimulatory requirement in 21 

diestrus and ovariectiomized females (36)  and a loss of neurohormone expression in lactation 22 

(38) .   23 

Hypothalamic neuron coordination is required for pituitary regulation 24 

Whatever the requirement for pulsatile hypothalamic output to generate pituitary hormonal 25 

pulses, there is an absolute requirement for hypophysiotropic regulation of the pituitary for 26 
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normal physiological function. This requires coordinated release from multiple neurons to 1 

ensure a sufficient concentration of neurohormone in the portal circulation to elicit a response 2 

from pituitary cells; for example, it has been shown that a minimum of 60 GnRH neurons are 3 

required for pulsatile LH release in mice (35,39) but five times that number are required for 4 

surge generation (40). More direct evidence for coordination has been shown by monitoring 5 

pairs of TIDA neurons, where the electrical activity of a proportion of cells are coordinated over 6 

a period of minutes (37). In both cases, there is an implication that a subset of the neuronal 7 

population is active at any one time, which may be important in avoiding fatigue. This provides 8 

a rationale for a large reserve population but also a requirement for interneuron coordination 9 

over both space and time; for example, a multi-layered spatial and temporal coordination of 10 

TIDA neurons remains stable over a period of days, which may underlie the sustained dopamine 11 

release required for inhibition of prolactin secretion (41). Such multi-layered organization of 12 

neuronal spiking frequencies are widely used for other brain-body functions, such as sleep, in 13 

both mammalian animal models and humans (42). 14 

Intrinsic and extrinsic mechanisms coordinate hypothalamic neuron activity 15 

The coordination of hypothalamic populations regulating pituitary secretion can occur through 16 

a number of mechanisms.  In other brain systems, including those of other parvocellular 17 

neuronal systems, negative feedback and feedforward loops act as relatively simple networks to 18 

coordinate population activities (43) and there is evidence for a similar network-driven 19 

coordination of the hypophysiotropic neurons. These can be divided into intrinsic interactions 20 

within a population and extrinsic coordination requiring input from other neuronal cell types. 21 

Whilst there is evidence for both (as described below), a combination is likely to ensure the 22 

coordination required for robust pituitary regulation.  23 

Intrinsic coordination 24 

Coordination of the electrical activity of hypophystiotropic neurons has been reported, in 25 

particular for dopamine (37,44) and cultured GnRH neurons (45). Whilst this may suggest a role 26 
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for electrical coupling through gap junctions, these have been shown to be absent in both mouse 1 

TIDA (37) and GnRH (46) neurons. There may be species differences, however, since in rat TIDA 2 

neurons electrical coupling mediated by gap junctions has been described (44). An alternative 3 

mechanism underlying intrinsic coordination is chemical coupling and there is evidence for this 4 

regulating TIDA neurons via negative feedback loops, with TIDA neurons both releasing and 5 

responding to GABA (47). In addition, dopamine 2 receptor (D2R) at the TIDA neuron cell body 6 

mediates an ultrashort feedback loop leading to oscillatory activity in rats (48). A similar 7 

ultrashort autoregulatory loop has been described for GnRH neurons, which express GnRH 8 

receptors and have altered electrical activity in response to GnRH (49).  9 

Extrinsic coordination 10 

Input from the higher brain centres regulating hypophysiotropic neurons will obviously 11 

coordinate their activity, however, there is a clear role for intrahypothalamic regulation (50) 12 

and it is well recognised that SST and kisspeptin have important regulatory roles in GHRH (51) 13 

and GnRH output (14) respectively. Recent studies have determined specific roles for these 14 

extrinsic factors and defined key steps in their regulation of neurohormone output.  The 15 

inhibitory action of SST has been shown to counterintuitively lead to stimulation of GHRH 16 

neurons as a result of an initial fast and transient direct inhibition of the GHRH neuron itself, 17 

followed by a delayed inhibition of both excitatory glutamate and inhibitory GABA inputs  (52). 18 

Optogenetic manipulation has identified kisspeptin as the GnRH pulse generator (25) and other 19 

studies have shown that firing of kisspeptin neurons is modulated by steroid feedback (53). 20 

Thus, feedforward loops are key features of both of these hypophysiotropic systems. A further 21 

complexity in the extrinsic inputs regulating hypophysiotropic ouput may be their subcellular 22 

location. Kisspeptin has been shown to have differential effects at the GnRH cell body compared 23 

with the nerve terminals at the median eminence (16), where a role for local endothelial nitric 24 

oxide production has been suggested as a local synchronising signal (54). 25 

The median eminence plays a role in coordinating and modifying hypothalamic output 26 
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The final step in the output of hypophysiotropic hormones is their release at the median 1 

eminence (ME). Release from a large number of neurons into this richly vascularised structure, 2 

with convoluted loops collecting output from a large release area, optimises both the amplitude 3 

and duration of neurohormone pulses in the portal circulation, whilst avoiding neuronal fatigue 4 

and exhaustion (41). In addition to roles in the coordination of hypophysiotropic factor release 5 

(see above), the ME may actively modify output by alteration of access of nerve terminals to the 6 

rich capillary bed by either changes in localisation, which has been shown to vary with age for 7 

GHRH neurons (55), or tanycyte ensheathment, shown for GnRH neurons to vary at different 8 

stages of the oestrous cycle (56).  9 

 Peripheral inputs can generate pituitary hormone pulses 10 

The importance of target organ feedback in the regulation of hypothalamic-pituitary axes is well 11 

recognised and incontrovertible, balancing the feedforward regulation by hypothalamic and 12 

pituitary factors. An excellent example of this is the differential regulation of LH and FSH by 13 

ovarian inputs, with reduced inhibin and increased progesterone feedback actions on the 14 

pituitary generating a second phase of FSH (but not LH) at proestrus and estrus (reviewed in 15 

(22)) (Figure. 1, left panel).  16 

Remarkably, recent studies inspired by mathematical modelling have shown that target organ 17 

feedback itself can act as a pituitary hormone pulse generator, as the fast feedforward action of 18 

ACTH on the adrenal gland and delayed feedback of glucocorticoids can generate pulses of both 19 

hormones with invariant CRH (reviewed in(6)) (Figure 1, right panel). Since an intra-adrenal 20 

glucocorticoid  feedback loop has recently been suggested from modelling (57), this suggests 21 

that the adrenal gland itself may be the primary pulse generator in the hypothalamic-pituitary-22 

adrenal axis in the absence of stress. The extent to which similar temporal relationships of 23 

hypothalamic-pituitary regulation and feedback exist for other axes is currently unclear, 24 

although a delayed feedback of prolactin on dopamine neurons (41) may have an important 25 
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impact on dopamine tone, facilitate increased secretion of prolactin and lead to the reported 1 

ultradian pulses of basal prolactin secretion (58).  2 

The potential interactions whereby feedback can generate or modulate pulsatile pituitary 3 

hormone secretion are complex and may include: 4 

 the temporal relationship between the feedforward and feedback regulation, which is 5 

complicated by the feedback occurring at multiple levels;  for example, the differential 6 

feedback actions of ovarian steroids are mediated by rapid non-genomic and classical 7 

steroid receptor actions in both the hypothalamus and pituitary during the oestrous 8 

cycle, with  effects that are dependent on receptor isoform expression and downstream 9 

signalling (reviewed in (22,24)).  10 

 the sensitivity of the system to feedback, exemplified in the thyroid axis, where 11 

differential expression of thyroid hormone receptor beta isoforms results in its relative 12 

increase in sensitivity to thyroid hormones (59), providing an anticipatory mechanism 13 

to protect peripheral organs from overexposure to these hormones (34). 14 

 differential feedback at the level of the hypothalamus and pituitary. Again the thyroid 15 

axis provides an excellent example of this, since feedback to the hypothalamus is 16 

dependent on active transport of thyroid hormone at the level of the median eminence 17 

(60) but is enhanced by post-translational modification of type 2 deiodinase (61).  18 

 multiple factors feeding back on a single cell type; for example, dopamine neurons will 19 

be exposed to GABA, dopamine and prolactin feedback, with different time scales 20 

(41,47,48).  21 

Thus, it is possible that feedback occurs at both pituitary and hypothalamic levels and at 22 

multiple sites within each organ, through the action of multiple factors on a single cell type, or 23 

both. This is further complicated when consideration of feedback to higher brain centres is 24 

included; for example, glucocorticoid feedback on the limbic system and brain stem (62). 25 

  26 
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Intrapituitary regulation of hormone pulse generation 1 

It is perfectly feasible that the anterior pituitary gland would simply passively respond to 2 

hypothalamic and peripheral inputs, with its cells simply acting as an amplifier of hypothalamic 3 

regulation that is modulated by feedback from target organs. However, it is now apparent that 4 

this is not the case, with an active role for the pituitary mediated by the structural organisation 5 

of its component cell types affecting how they receive, interpret and translate hypothalamic and 6 

peripheral signals into highly ordered hormone pulses. This was previously suggested by a 7 

disconnect in the output of dispersed pituitary cells compared with those in the intact gland 8 

(63) but is being increasingly demonstrated and dissected using a combination of mouse models 9 

and technological innovation which allows both temporal and structural imaging (64,65).  10 

Pituitary cells are organised as intermingled homotypic cell networks. 11 

Large-scale 3D imaging of genetically-modified mouse models expressing fluorescent proteins 12 

under hormone promoter control has revealed the structural and functional organisation of the 13 

pituitary gland and its rich vascularisation (4). This has described the developmental program 14 

of the topological organisation of differentiated cells throughout the gland (63,66) from early 15 

fetal life to adulthood, and has demonstrated a role for early-differentiated cells (e.g. 16 

corticotrophs) in controlling both the positioning and expression of late-differentiated cells (e.g. 17 

gonadotrophs) (67) . Contact between homotypic cells and organisation of characteristic 18 

morphological features occurs soon after endocrine cell differentiation, before the onset of 19 

hormone secretion and leads to cell network formation (67,68). Among the signal molecules 20 

involved in cell network architecture and plasticity, detailed analysis of the cadherin family has 21 

revealed a ‘bar-coding’ expression of cadherins within distinct pituitary cell populations from 22 

both mouse models (69) and humans (70), which has also been proposed as a marker rule for 23 

discriminating invasiveness in GH and PRL adenomas. 24 

Pituitary cell networks share fundamental properties with other biological networks including 25 

metabolic signalling networks in yeast and bacteria (71), where a  prevalent feature is that of 26 
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simple assembles of elements (so-called network motifs) which recur within the population 1 

(72). The organisation of the various pituitary cell types into distinct motifs suggests that there 2 

will be differences and similarities in their role in axes function.  The spatial organisation, and 3 

its plasticity throughout life, is exemplified by the GH and prolactin cell networks. Upon sexual 4 

maturation there is a transient increase in the generation of multiple clusters of contacting GH 5 

cells (illustrated in Figure 2) in males but not females in the wings of the pituitary, coincident 6 

with an increase in the highly ordered GH pulses which control liver insulin-like growth factor 1 7 

production (64,68). The importance of these GH cell clusters as network motifs which lead to 8 

increased  body growth is suggested by the correlation of their formation with growth rate (68) 9 

and the finding that GH-deficient animals are normal in size if the GH cell clusters are preserved 10 

(73). In contrast, PRL cells are organised as multiple honeycomb network motifs (like an orange 11 

peel) which are more prominent in lactating females and display experience-dependant 12 

plasticity as they remain after weaning (74).  This altered network organisation has been shown 13 

to result in enhanced prolactin output in subsequent lactations (74) and may have a role in 14 

reducing the tonic output of prolactin in reproductively experienced rats (75) through an 15 

enhanced response to dopamine inhibition  (76). 16 

The vasculature has a role in signal input to pituitary cell networks  17 

Networks of endocrine cells do not work alone but form a functional continuum with other 18 

elements within the pituitary gland, including the vasculature. Network motifs and the rich 19 

plexus of fenestrated capillaries are topologically organized in a manner which is distinct for 20 

each endocrine cell type (Figure 2), and may therefore reflect their different secretory temporal 21 

dynamics (63). Initial cell network formation begins before the first capillaries invade 22 

embryonic pituitary tissue (67) and loss of the pituitary cell transcription factor Prop1 leads to 23 

a failure of organ vascularization (77). Thus, endocrine cell networks have a stimulatory and 24 

organisational role in patterning capillary invasion.  25 
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The organisation of the vasculature with pituitary endocrine networks  may have a significant 1 

impact on the amplitude and timing of exposure of pituitary cells to hypothalamic regulatory 2 

factors since seminal studies of the portal vasculature have shown that hypophysiotropic nerve 3 

terminals specifically abut portal vessels which irrigate specific pituitary regions (78,79). In 4 

addition, there is a highly dynamic regulation of the distribution of incoming secretagogues 5 

within the pituitary through altered blood flow dynamics within the capillary bed of the 6 

pituitary (80) but rapid transit of signalling molecules (in a range of seconds) throughout portal 7 

fenestrated capillaries (81). This suggests differential timing of exposure of different regions of 8 

the pituitary to hypophysiotropic factors, resulting in a complex dynamic of sequential 9 

stimulation, with “scout cells” stimulated before other cells within a homotypic network. Since 10 

networks have a functionally coordinating role (see below), this pattern of exposure may lead to 11 

synergistic interactions and potential role(s) for specific subsets of cells ensuring robust 12 

responses to stimulation.  The contribution of the blood system to pituitary hormone pulsatility 13 

also involves the fate of hormones from their releasing site towards the bloodstream, which will 14 

ultimately deliver the appropriate pattern of hormone pulses to the peripheral target, as well as 15 

coordination of oxygen and nutrient supply with the metabolically demanding processes of (80). 16 

Pituitary networks coordinate response to regulation 17 

A functional role for homotypic pituitary cell networks in determining endocrine output is 18 

suggested by their formation before the onset of hormone secretion and stimulation by 19 

secretagogues and functional reorganization in response to altered demand (68,74). This has 20 

been confirmed by ex vivo analysis of calcium and gene expression dynamics in homotypic cell 21 

networks, with coordinated responses to stimulation that are severely dysregulated when 22 

networks are disrupted (64,73,82,83). Gap junction coupling contributes to this network 23 

coordination (64,74,82), however, this does not preclude roles for paracrine factors between 24 

both homotypic and heterotypic cells (reviewed extensively in (84)), such as secreted TSH 25 

which exerts an ultrashort negative feedback which could drive ultradian TSH pulses (34). It is 26 
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also possible that pituitary networks mediate predictive programming, or priming, of axis 1 

function since in prolactin cells, the increased organisation  associated with lactation persists 2 

for months after weaning and leads to enhanced function (74). Similarly, the increased 3 

clustering of somatotrophs at puberty could be considered as a priming event for increased GH 4 

release, although in this case the effect is transient (64). It is possible that similar transient 5 

changes in organisation enhance the altered sensitivity and self-priming of gonadotrophs to 6 

GnRH stimulation (85) since increased cell movement and number of cell processes have been 7 

described in this cell type in response to GnRH (86) and estradiol (87). Thus both structural and 8 

functional organisation of pituitary endocrine cells as intermingled 3D cell networks have 9 

important roles in the amplitude and dynamics of hormone secretion which can be modified 10 

throughout life.  11 

Pituitary cells are heterogeneous  12 

Whilst pituitary networks mediate a coordination of cell activity, individual cells also show 13 

functional heterogeneity, which may reflect transient or permanent differences in cell activity. 14 

This is exemplified by the identification of a small subset of prolactin cells which act as pace-15 

makers, or network nodes, synchronizing the activity of nearby homotypic network cells (65). It 16 

is these pace-making cells which mediate the altered function of prolactin cells between first 17 

and second lactation, showing an ability to store a cellular memory of previous demand that 18 

also leads to an enhanced output when rechallenged (akin to learning). Over a timescale which 19 

is an order of magnitude longer than that of secretory activity, prolactin gene expression in 20 

lactotrophs has also been shown to be heterogeneous (82). A continuous distribution of both 21 

transcription rates and switches were found in this study, although interestingly this was locally 22 

spatially coordinated by the prolactin cell network, suggesting that the mechanisms underlying 23 

homotypic cell coordination can act over a wide range of timescales.  Similar functional 24 

heterogeneity has been described for other pituitary cell types, which can result in stereotypic 25 

variable responses to stimulation which have previously been considered to be stochastic (88). 26 
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Further studies are required to determine if these heterogeneous responses identify a distinct 1 

sub-population of pituitary cells or transient activity states, which will likely be identified by 2 

high throughput sequencing technologies and/or photolabeling of individual cells in situ (89). 3 

Pituitary cell secretion is integrated to shape pulsatile circulating hormone  4 

The rate of entry of a secreted pulse of pituitary hormone to the bloodstream and exit from the 5 

gland will be determined by the relationship of cell networks with the pituitary 6 

microvasculature, where perivascular spaces act as gate-keepers for hormone transfer to the 7 

capillary lumen (80). Once in the systemic circulation, a pulse of hormone will be combined with 8 

that released in previous secretory events, resulting in the concentration of circulating hormone 9 

is an integration of basal and pulsatile release which is dependent on hormone half-life (1,4). 10 

Since the half-life of pituitary hormones can be modified by circulating binding proteins (90) 11 

and post-translational modification (34), both of which also modify their bioavailability, the 12 

pattern of exposure of a receptor to a hormone pulse is complex and will not simply mirror that 13 

of pituitary release.  14 

 15 

Implications for health and disease 16 

A recognition that pulses of pituitary hormone are generated and modified at multiple levels has 17 

important implications for the study of normal axes function but, importantly, also for how 18 

dysregulation occurs and for identification of therapeutic targets. This is particularly relevant to 19 

pituitary tumours, where hormone output is largely independent of hypothalamic stimulation. 20 

In Cushing’s disease, for example, there is a marked increase in basal secretion of both ACTH 21 

and cortisol and pulsatility is preserved (91) but becomes less ordered (92). Significantly when 22 

considering the interaction between glands, there is a decrease in the potency of cortisol 23 

stimulation by ACTH (93) and a reduction in the pulse correlation of  the two hormones (91). 24 

Similar changes in the orderliness of pituitary hormones has been described for other types of 25 
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pituitary adenoma, which importantly is largely normalised by surgical but not medical 1 

treatment (94).  2 

It is possible that the interactions between the hypothalamus, pituitary and target organs in 3 

generating pulses may have a significant role in a number of endocrine disorders, and thus 4 

should be considered as a potential mechanism leading to disease as well as new targets for 5 

therapy.  For example, multiple studies to identify defects leading to polycystic ovarian 6 

syndrome (PCOS) have focused on dysregulation at the levels of the hypothalamus (95,96) and 7 

ovary (97). Aspects of the disorder, such as the potential role of hyperinsulinemia in loss of 8 

fertility have been studied at the level of the pituitary (eg (98)) but overall there has been a 9 

paucity of studies of the role of the pituitary. It is possible that increased LH pulse amplitude 10 

(but not pulse frequency) found in PCOS patients may be a result of an alteration of pituitary 11 

function and further research into a potential role of the pituitary in this disorder is warranted. 12 

Given that PCOS is a heterogeneous syndrome, it is possible that there are multiple aetiologies 13 

that involve all levels of the HPG axis some of which  may be secondary to the primary defect 14 

but nevertheless require improved understanding and may be targets for therapy.  15 

The multi-level regulation of pulsatile hormone output also has important implications for 16 

diagnosis of dysfunction. An excellent example of this is provided by the thyroid axis, where the 17 

“normal” concentration of circulating TSH can vary between individuals (34) and may be 18 

altered for prolonged periods following normalisation of axis function following hyper- or 19 

hypothyroidism, referred to as hysteresis (99). This may occur as a result of differential rates of 20 

feedback regulation at different levels of the axis; for example, a reduction in hypothalamic TRH 21 

gene expression in response to normalisation of hypothyroidism (100) would be expected to be 22 

rapid in comparison with any change in pituitary thyrotroph cell mass (101), resulting in an 23 

alteration of the set point for each level of the axis.  24 

 25 

Future research/perspective 26 
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Models of pituitary pulse generation:  1 

It is clear that there has recently been substantial progress in understanding the contribution of 2 

individual components of hypothalamic-pituitary-target organ axes to pulse generation. However, the 3 

challenge is to dissect the temporal interactions of these individual components, which requires in 4 

vivo studies with simultaneous monitoring of system inputs and/or outputs. The use of imaging 5 

technology to observe cell activity has been instrumental in much of the recent progress, since it 6 

allows both temporal and spatial resolution of activities. Further development of in vivo imaging 7 

technology, such as the use of gradient index lenses (102), is required to facilitate this. An important 8 

consideration in these studies is the silencing of multiple hypothalamic neuron populations by 9 

anaesthesia (80), meaning that imaging in awake, freely moving animals is required. Furthermore, 10 

monitoring of cell stimulation and activity currently relies on imaging of specific cell signals, such as 11 

calcium as a surrogate for monitoring both inputs and outputs (eg (64)). The development of 12 

methodologies to specifically monitor receptor activation, such as “sniffer cells” (103) or luciferase 13 

monitoring of G-protein coupled (104) and cytokine receptor (105) activation may allow more direct 14 

measurement of both stimulatory inputs and hormonal output.   15 

The heterogeneity of both hypothalamic and pituitary cell populations in generating hormone pulses 16 

has been a notable feature throughout this review. Whilst it is possible that this may represent 17 

stochastic cell activity in some cases, in others it has been found to be deterministic (88). Since 18 

multiple studies have demonstrated that only a small proportion of hypothalamic (eg GnRH (40)) or 19 

pituitary (eg GH (73)) cells are required for apparent normal function, the question remains whether 20 

the heterogeneous responses reflect sub-populations with specific physiological functions. Identifying 21 

the differences in protein expression and post-translational modification that may underlie 22 

heterogeneity may be suggested by single cell transcriptomics of cells with specific activities. These 23 

studies will not define whether the heterogeneity reflects transient activity or specific sub-population 24 

of cells, however they will suggest factors that define sub-populations of cells currently primarily 25 

defined by the hormone they produce. The use of cell tracing methodologies, optogenetics and 26 

Designer Receptors Exclusively Activated by Designer Drugs (DREADDS), which have already 27 
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made dramatic contributions to understanding of hypothalamic-pituitary axis function (eg (25,106)), 1 

will allow confirmation of sub-population identity and study of their function. This will be facilitated 2 

by the use of CRISPR/Cas technology in combination with adeno-associated viral delivery of factors 3 

to manipulate cell function (107). Such single cell transcriptomic approaches have been successfully 4 

applied in other systems, with consequences for identifying novel therapeutic targets (108) and for 5 

sub-population identification in the brain (109).  6 

Our identification of features akin to memory and learning in the pituitary suggests a potential role of 7 

the gland in physiological programming. For example, a persistent alteration in corticotroph activity 8 

has been described in adult sheep exposed to a brief period of maternal perinatal undernutrition (110). 9 

There is a clear requirement for further investigation of epigenetic alteration of gene expression in 10 

such models, however, persistent changes in pituitary cell organisation leading to altered network 11 

functions are also possible. This will require in vivo analysis, as well as a clearer understanding of the 12 

mechanisms underlying network-mediated regulation of axis function. The single cell transcriptomics 13 

and cell manipulations described above may allow identification of potential mechanisms underlying 14 

network function. Mathematical modelling and tissue engineering may aid understanding of how 15 

different network motifs affect cell-cell coordination.  16 

Finally, the role of the vasculature in modifying temporal and spatial regulation of pituitary function 17 

and clearance of secreted hormone from the gland is an area that requires further analysis which 18 

should be possible with optogenetic manipulation or the use of DREADDS. These may also be used 19 

to determine how the relationship of pituitary cell networks and the vasculature is altered in adenoma 20 

formation (111), as well as in other axes dysfunctions such as PCOS.  21 

Translation to the clinic: 22 

The mechanisms leading to pituitary hormone pulse generation that are currently being elucidated in 23 

rodent models are likely to generally translate to those in humans, however, there are clear species 24 

differences in the physiology of pituitary axes (eg prolactin (112)). Analysis of post-mortem pituitary 25 

tissue will allow comparison of network organisation and their relationship with the vasculature, as 26 
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well as the expression patterns of factors identified as intermediates in network function. It is also 1 

possible that fresh post-mortem tissue and adenomas from patients will allow some functional 2 

analysis of human pituitary function and correlation with that of rodents. The analysis of organoids of 3 

pituitary tissue differentiated from induced pluripotent stem cells (113) will most likely establish 4 

whether mechanisms underlying rodent network function are recapitulated in humans, as well as the 5 

consequences of mutations identified in patients presenting at clinic with pituitary dysfunction. 6 

Many of the current protocols for diagnosis of pituitary dysfunction may not fully interrogate the 7 

complex interactions leading to pulse generation, which may explain why, for example, current 8 

provocation tests misdiagnose GH axis function in a proportion of patients (114). Rodent models will 9 

allow the development of tests which can more fully define hypothalamic and pituitary functionality 10 

and determination of parameters that are affected when physiology is altered; for example, at puberty 11 

and in obesity. It is also possible that an in vivo assessment of pituitary function may be possible 12 

through an improved understanding of how pituitary blood flow relates to function, as this may be 13 

assessed in patients through, for example, ultra-fast ultrasound imaging (115). 14 

Identification of pituitary cell networks may also affect whether and how stem cell therapy could be 15 

used for treatment of hypopituitarism, which would be simplified in humans through transphenoidal 16 

access to the pituitary. Whilst there has been substantial progress in identifying pituitary stem cells 17 

(116,117) and developing protocols for differentiation of embryonic and pluripotent stem cells to 18 

pituitary tissue (118,119), it is currently unclear whether stem cells would be capable of self-19 

organisation or integration into existing pituitary cell networks.  This is further complicated by the 20 

identification of functional heterogeneity and programming of cell function by previous demand. A 21 

naïve stem cell may be capable of differentiation to a lactotroph and integration into an existing 22 

network, for example, but may not be functionally equivalent to a cell exposed to the demands of 23 

lactation. Furthermore, the prevalence of pituitary adenomas with aberrant network function reflected 24 

in disorganised pulsatile output (94) suggests that a failure to fully integrate or recapitulate normal 25 

network function may be a risk for the development of pathology. Injection of lineage traced stem 26 
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cells into the pituitaries of rodent models of hypopituitarism and functional imaging of their function 1 

may establish the potential for stem cell therapy in humans.  2 

Conclusion 3 

The elegant and ground-breaking experiments of Harris and colleagues were prescient in their 4 

use of in vivo models which allow multi-organ interactions. It is now clear that in such an 5 

interactive system the concept of a hierarchy is not appropriate except in the identification of a 6 

pulse generator, which in the case of the HPA axis, at least, may not be the hypothalamus. This 7 

does not suggest that the mechanisms and principles underlying the relationship of the 8 

hypothalamus, pituitary and target organs differ between axes but the strength and timing of 9 

inputs lead to unique features. Thus, the concepts underlying Harris’s Neurohormone Theory of 10 

regulation of pituitary axes have borne the test of time but new levels of complexity have 11 

emerged that require consideration of interactions between multiple components of the axes. 12 
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Figure legends: 1 

Figure 1. A simplified schematic showing the contrasting regulation of pituitary hormone 2 

pulse generation between the hypothalamic-pituitary-gonadal (HPG) and hypothalamic-3 

pituitary-adrenal (HPA) axes. In the HPG axis, the pulse generator is localised in the 4 

hypothalamus, where afferent inputs from kisspeptin neurons (25) and neuronal feedforward 5 

loops (53) lead to pulsatile release of gonadotrophin releasing hormone (GnRH). This results on 6 

the release of pulses of luteinizing (LH) and follicle stimulating (FSH) hormone, stimulating 7 

secretion of steroids from the gonads which feedback on a relatively slow timescale to both the 8 

pituitary and hypothalamus. In contrast, in the HPA axis the rapid actions of 9 

adrenocorticotrophic hormone on the adrenal gland and delayed feedback of glucocorticoids on 10 

the anterior pituitary is the source of pulse generation, with corticotrophin releasing hormone 11 

(CRH) having a modulatory role (28). 12 

 13 

Figure 2. The growth hormone (GH) cell network and its relationship with the 14 

vasculature.  Two-photon imaging of the pituitary of a GH-GFP transgenic mouse with 15 

capillaries labelled with gelatine-rhodamine (red). GH cells are organised into a homotypic 16 

topologically organised network of cell clusters which are linked by strings of single cells. The 17 

cell network is closely associated with capillaries, which are aligned with strings of cells and 18 

surround the clusters. 19 



  

 

 



  

 


