1,246 research outputs found

    Hyperswitch communication network

    Get PDF
    The Hyperswitch Communication Network (HCN) is a large scale parallel computer prototype being developed at JPL. Commercial versions of the HCN computer are planned. The HCN computer being designed is a message passing multiple instruction multiple data (MIMD) computer, and offers many advantages in price-performance ratio, reliability and availability, and manufacturing over traditional uniprocessors and bus based multiprocessors. The design of the HCN operating system is a uniquely flexible environment that combines both parallel processing and distributed processing. This programming paradigm can achieve a balance among the following competing factors: performance in processing and communications, user friendliness, and fault tolerance. The prototype is being designed to accommodate a maximum of 64 state of the art microprocessors. The HCN is classified as a distributed supercomputer. The HCN system is described, and the performance/cost analysis and other competing factors within the system design are reviewed

    An investigation of microstructural characteristics of contact-lens polymers

    Get PDF
    The free volume and gas permeability in several contact lens specimens were measured as part of a Space Commercialization Program. Free volume was measured using positron lifetime spectroscopy, while permeability for O2, N2, CO2 gases was measured using mass spectrometry and polarography. Permeability for all gases increases with the mean free volume cell size in the test samples. As might be expected, the specimens with the highest free volume fraction also exhibit the lowest Rockwell Hardness Number. An interesting corollary is the finding that the presence of fluorine atoms in the lens chemical structure inhibits filling up of their free volume cells. This is expected to allow the lenses to breathe freely while in actual use

    Ambient-temperature co-oxidation catalysts

    Get PDF
    Oxidation catalysts which operate at ambient temperature were developed for the recombination of carbon monoxide (CO) and oxygen (O2) dissociation products which are formed during carbon dioxide (CO2) laser operation. Recombination of these products to regenerate CO2 allows continuous operation of CO2 lasers in a closed cycle mode. Development of these catalyst materials provides enabling technology for the operation of such lasers from space platforms or in ground based facilities without constant gas consumption required for continuous open cycle operation. Such catalysts also have other applications in various areas outside the laser community for removal of CO from other closed environments such as indoor air and as an ambient temperature catalytic converter for control of auto emissions

    Decoupling of morphological disparity and taxic diversity during the adaptive radiation of anomodont therapsids

    Get PDF
    Adaptive radiations are central to macroevolutionary theory. Whether triggered by acquisition of new traits or ecological opportunities arising from mass extinctions, it is debated whether adaptive radiations are marked by initial expansion of taxic diversity or of morphological disparity (the range of anatomical form). If a group rediversifies following a mass extinction, it is said to have passed through a macroevolutionary bottleneck, and the loss of taxic or phylogenetic diversity may limit the amount of morphological novelty that it can subsequently generate. Anomodont therapsids, a diverse clade of Permian and Triassic herbivorous tetrapods, passed through a bottleneck during the end-Permian mass extinction. Their taxic diversity increased during the Permian, declined significantly at the Permo–Triassic boundary and rebounded during the Middle Triassic before the clade's final extinction at the end of the Triassic. By sharp contrast, disparity declined steadily during most of anomodont history. Our results highlight three main aspects of adaptive radiations: (i) diversity and disparity are generally decoupled; (ii) models of radiations following mass extinctions may differ from those triggered by other causes (e.g. trait acquisition); and (iii) the bottleneck caused by a mass extinction means that a clade can emerge lacking its original potential for generating morphological variety

    Water Budget of a Shallow Aquifer in the Lower Coastal Plain: ACE Basin, SC

    Get PDF
    The expansive tidal salt marshes of South Carolina support a unique and sensitive ecosystem providing environmental and economic value to the coastal community. These tidal ecosystems are often altered by sea level rise through various processes, including the lesser-known stress of saltwater intrusion in groundwater systems. The goal of this research was to measure the baseline groundwater dynamics of an undeveloped tidal saltmarsh. Groundwater wells were installed along transects from the upland into the marsh and a culminating water budget of the watershed was developed. Analysis of water table dynamics showed that in the upland zone, evapotranspiration and precipitation were the dominant processes, whereas in the marsh zone and the uplands directly adjacent to the marsh, water table fluctuations were dominated by tides. An influencing feature for the site was the large tidal creek (Big Bay Creek), which is a tributary of the South Edisto River. The cut bank of Big Bay Creek was adjacent to the south end of the study site where tidal influence on the shallow groundwater was observed. The location of an ephemeral stream through the site was considered as a potential pathway for saltwater intrusion into the uplands, yet this was not confirmed. Groundwater response rates were likely influenced by the presence of fine-grained, well-drained sandy soils. Application of this research will assist coastal resource managers identifying pathways of marsh migration as driven by future seal level rise

    Water Budget of a Surficial Aquifer in the Lower Coastal Plain: ACE Basin, SC

    Get PDF
    2014 S.C. Water Resources Conference - Informing Strategic Water Planning to Address Natural Resource, Community and Economic Challenge

    Radical political unionism reassessed

    Get PDF
    Defections from European social-democratic parties and a resurgence of union militancy have prompted some to diagnose a new left-wing trade unionism across Europe. This comment on the article by Connolly and Darlington scrutinizes trends in France and Germany but primarily analyses recent developments in Britain. While there are some instances of disaffiliation from the Labour Party, support for electoral alternatives, growth in political militancy and emphasis on new forms of internationalism, these have been limited. There is insufficient evidence to suggest that we are witnessing the making of a new radical collectivism

    The Role of Legal Services in the Antipoverty Program

    Get PDF
    Large-scale adaptive radiations might explain the runaway success of a minority of extant vertebrate clades. This hypothesis predicts, among other things, rapid rates of morphological evolution during the early history of major groups, as lineages invade disparate ecological niches. However, few studies of adaptive radiation have included deep time data, so the links between extant diversity and major extinct radiations are unclear. The intensively studied Mesozoic dinosaur record provides a model system for such investigation, representing an ecologically diverse group that dominated terrestrial ecosystems for 170 million years. Furthermore, with 10,000 species, extant dinosaurs (birds) are the most speciose living tetrapod clade. We assembled composite trees of 614-622 Mesozoic dinosaurs/birds, and a comprehensive body mass dataset using the scaling relationship of limb bone robustness. Maximum-likelihood modelling and the node height test reveal rapid evolutionary rates and a predominance of rapid shifts among size classes in early (Triassic) dinosaurs. This indicates an early burst niche-filling pattern and contrasts with previous studies that favoured gradualistic rates. Subsequently, rates declined in most lineages, which rarely exploited new ecological niches. However, feathered maniraptoran dinosaurs (including Mesozoic birds) sustained rapid evolution from at least the Middle Jurassic, suggesting that these taxa evaded the effects of niche saturation. This indicates that a long evolutionary history of continuing ecological innovation paved the way for a second great radiation of dinosaurs, in birds. We therefore demonstrate links between the predominantly extinct deep time adaptive radiation of non-avian dinosaurs and the phenomenal diversification of birds, via continuing rapid rates of evolution along the phylogenetic stem lineage. This raises the possibility that the uneven distribution of biodiversity results not just from large-scale extrapolation of the process of adaptive radiation in a few extant clades, but also from the maintenance of evolvability on vast time scales across the history of life, in key lineages

    Rare-isotope and kinetic studies of Pt/SnO2 catalysts

    Get PDF
    Closed-cycle pulsed CO2 laser operation requires the use of an efficient CO-O2 recombination catalyst for these dissociation products which otherwise would degrade the laser operation. The catalyst must not only operate at low temperatures but also must operate efficiently for long periods. In the case of the Laser Atmospheric Wind Sounder (LAWS) laser, an operational lifetime of 3 years is required. Additionally, in order to minimize atmospheric absorption and enhance aerosol scatter of laser radiation, the LAWS system will operate at 9.1 micrometers with an oxygen-18 isotope CO2 lasing medium. Consequently, the catalyst must not only operate at low temperatures but must also preserve the isotopic integrity of the rare-isotope composition in the recombination mode. Several years ago an investigation of commercially available and newly synthesized recombination catalysts for use in closed-cycle pulsed common and rare-isotope CO2 lasers was implemented at the NASA Langley Research Center. Since that time, mechanistic efforts utilizing both common and rare oxygen isotopes have been implemented and continue. Rare-isotope studies utilizing commercially available platinum-tin oxide catalyst have demonstrated that the catalyst contributes oxygen-16 to the product carbon dioxide thus rendering it unusable for rare-isotope applications. A technique has been developed for modification of the surface of the common-isotope catalyst to render it usable. Results of kinetic and isotope label studies using plug flow, recycle plug flow, and closed internal recycle plug flow reactor configuration modes are discussed
    • …
    corecore