39 research outputs found

    Autonomous ultrasonic based water level detection and control system

    Get PDF
    This paper presents an automated non-intrusive control system for monitoring the water level of domestic overhead and underground reservoir tank base on the property of wave reflection. The system consists of two HC-SR04 Ultrasonic transceivers that generate ultrasonic pulses and determines the depth of the water surface based on the total Time of Flight (TOF) of the reflected wave. An ATMEGA328 microcontroller was programmed to read the sensors, control the water level and display the corresponding volume of the water on a Liquid Crystal Display (LCD). The experimental result proves the system stability both at turbulence and laminar flows. The proposed approach can be extended to monitor and control the volume and level of other valuable fluids such as diesel, kerosene etc.; as well as hazardous chemical where human interventions may be treacherous.Keywords: Ultrasonic, Transceiver, Time of flight, Liquid Crystal Displa

    Multiangulation position estimation performance analysis using a Bartlett’s Beamforming Method

    Get PDF
    In this work, a complete multiangulation system was developed and its performance in term of position estimation (PE) was determined. The developed system uses Bartlett’s beam forming method to estimate AOA of the signal impinging on the 16-element sensor array in a uniform linear array (ULA) geometry at each ground receiving station (GRS). The AOA measurements are then used as input to a linear angulation algorithm for PE. The PE accuracy of the developed system was determined using Monte Carlo simulation and compared with the directional rotating antenna multiangulation system using a square GRS configuration. Simulation results shows that the developed multiangulation PE error is 50% lower than that of the directional rotating antenna system. Furthermore, the PE error of the developed system is higher for emitting sources within the system coverage with position bearings within 610 to 1200 and 2400 to 3000 than other emitting source locations.Keywords: multiangulation system, position estimation, beam forming, Monte Carlo Simulation, position bearin

    Tracking development assistance for health and for COVID-19 : a review of development assistance, government, out-of-pocket, and other private spending on health for 204 countries and territories, 1990-2050

    Get PDF
    Background The rapid spread of COVID-19 renewed the focus on how health systems across the globe are financed, especially during public health emergencies. Development assistance is an important source of health financing in many low-income countries, yet little is known about how much of this funding was disbursed for COVID-19. We aimed to put development assistance for health for COVID-19 in the context of broader trends in global health financing, and to estimate total health spending from 1995 to 2050 and development assistance for COVID-19 in 2020. Methods We estimated domestic health spending and development assistance for health to generate total health-sector spending estimates for 204 countries and territories. We leveraged data from the WHO Global Health Expenditure Database to produce estimates of domestic health spending. To generate estimates for development assistance for health, we relied on project-level disbursement data from the major international development agencies' online databases and annual financial statements and reports for information on income sources. To adjust our estimates for 2020 to include disbursements related to COVID-19, we extracted project data on commitments and disbursements from a broader set of databases (because not all of the data sources used to estimate the historical series extend to 2020), including the UN Office of Humanitarian Assistance Financial Tracking Service and the International Aid Transparency Initiative. We reported all the historic and future spending estimates in inflation-adjusted 2020 US,2020US, 2020 US per capita, purchasing-power parity-adjusted USpercapita,andasaproportionofgrossdomesticproduct.Weusedvariousmodelstogeneratefuturehealthspendingto2050.FindingsIn2019,healthspendinggloballyreached per capita, and as a proportion of gross domestic product. We used various models to generate future health spending to 2050. Findings In 2019, health spending globally reached 8. 8 trillion (95% uncertainty interval [UI] 8.7-8.8) or 1132(11191143)perperson.Spendingonhealthvariedwithinandacrossincomegroupsandgeographicalregions.Ofthistotal,1132 (1119-1143) per person. Spending on health varied within and across income groups and geographical regions. Of this total, 40.4 billion (0.5%, 95% UI 0.5-0.5) was development assistance for health provided to low-income and middle-income countries, which made up 24.6% (UI 24.0-25.1) of total spending in low-income countries. We estimate that 54.8billionindevelopmentassistanceforhealthwasdisbursedin2020.Ofthis,54.8 billion in development assistance for health was disbursed in 2020. Of this, 13.7 billion was targeted toward the COVID-19 health response. 12.3billionwasnewlycommittedand12.3 billion was newly committed and 1.4 billion was repurposed from existing health projects. 3.1billion(22.43.1 billion (22.4%) of the funds focused on country-level coordination and 2.4 billion (17.9%) was for supply chain and logistics. Only 714.4million(7.7714.4 million (7.7%) of COVID-19 development assistance for health went to Latin America, despite this region reporting 34.3% of total recorded COVID-19 deaths in low-income or middle-income countries in 2020. Spending on health is expected to rise to 1519 (1448-1591) per person in 2050, although spending across countries is expected to remain varied. Interpretation Global health spending is expected to continue to grow, but remain unequally distributed between countries. We estimate that development organisations substantially increased the amount of development assistance for health provided in 2020. Continued efforts are needed to raise sufficient resources to mitigate the pandemic for the most vulnerable, and to help curtail the pandemic for all. Copyright (C) 2021 The Author(s). Published by Elsevier Ltd.Peer reviewe

    Global incidence, prevalence, years lived with disability (YLDs), disability-adjusted life-years (DALYs), and healthy life expectancy (HALE) for 371 diseases and injuries in 204 countries and territories and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Detailed, comprehensive, and timely reporting on population health by underlying causes of disability and premature death is crucial to understanding and responding to complex patterns of disease and injury burden over time and across age groups, sexes, and locations. The availability of disease burden estimates can promote evidence-based interventions that enable public health researchers, policy makers, and other professionals to implement strategies that can mitigate diseases. It can also facilitate more rigorous monitoring of progress towards national and international health targets, such as the Sustainable Development Goals. For three decades, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) has filled that need. A global network of collaborators contributed to the production of GBD 2021 by providing, reviewing, and analysing all available data. GBD estimates are updated routinely with additional data and refined analytical methods. GBD 2021 presents, for the first time, estimates of health loss due to the COVID-19 pandemic. Methods: The GBD 2021 disease and injury burden analysis estimated years lived with disability (YLDs), years of life lost (YLLs), disability-adjusted life-years (DALYs), and healthy life expectancy (HALE) for 371 diseases and injuries using 100 983 data sources. Data were extracted from vital registration systems, verbal autopsies, censuses, household surveys, disease-specific registries, health service contact data, and other sources. YLDs were calculated by multiplying cause-age-sex-location-year-specific prevalence of sequelae by their respective disability weights, for each disease and injury. YLLs were calculated by multiplying cause-age-sex-location-year-specific deaths by the standard life expectancy at the age that death occurred. DALYs were calculated by summing YLDs and YLLs. HALE estimates were produced using YLDs per capita and age-specific mortality rates by location, age, sex, year, and cause. 95% uncertainty intervals (UIs) were generated for all final estimates as the 2·5th and 97·5th percentiles values of 500 draws. Uncertainty was propagated at each step of the estimation process. Counts and age-standardised rates were calculated globally, for seven super-regions, 21 regions, 204 countries and territories (including 21 countries with subnational locations), and 811 subnational locations, from 1990 to 2021. Here we report data for 2010 to 2021 to highlight trends in disease burden over the past decade and through the first 2 years of the COVID-19 pandemic. Findings: Global DALYs increased from 2·63 billion (95% UI 2·44–2·85) in 2010 to 2·88 billion (2·64–3·15) in 2021 for all causes combined. Much of this increase in the number of DALYs was due to population growth and ageing, as indicated by a decrease in global age-standardised all-cause DALY rates of 14·2% (95% UI 10·7–17·3) between 2010 and 2019. Notably, however, this decrease in rates reversed during the first 2 years of the COVID-19 pandemic, with increases in global age-standardised all-cause DALY rates since 2019 of 4·1% (1·8–6·3) in 2020 and 7·2% (4·7–10·0) in 2021. In 2021, COVID-19 was the leading cause of DALYs globally (212·0 million [198·0–234·5] DALYs), followed by ischaemic heart disease (188·3 million [176·7–198·3]), neonatal disorders (186·3 million [162·3–214·9]), and stroke (160·4 million [148·0–171·7]). However, notable health gains were seen among other leading communicable, maternal, neonatal, and nutritional (CMNN) diseases. Globally between 2010 and 2021, the age-standardised DALY rates for HIV/AIDS decreased by 47·8% (43·3–51·7) and for diarrhoeal diseases decreased by 47·0% (39·9–52·9). Non-communicable diseases contributed 1·73 billion (95% UI 1·54–1·94) DALYs in 2021, with a decrease in age-standardised DALY rates since 2010 of 6·4% (95% UI 3·5–9·5). Between 2010 and 2021, among the 25 leading Level 3 causes, age-standardised DALY rates increased most substantially for anxiety disorders (16·7% [14·0–19·8]), depressive disorders (16·4% [11·9–21·3]), and diabetes (14·0% [10·0–17·4]). Age-standardised DALY rates due to injuries decreased globally by 24·0% (20·7–27·2) between 2010 and 2021, although improvements were not uniform across locations, ages, and sexes. Globally, HALE at birth improved slightly, from 61·3 years (58·6–63·6) in 2010 to 62·2 years (59·4–64·7) in 2021. However, despite this overall increase, HALE decreased by 2·2% (1·6–2·9) between 2019 and 2021. Interpretation: Putting the COVID-19 pandemic in the context of a mutually exclusive and collectively exhaustive list of causes of health loss is crucial to understanding its impact and ensuring that health funding and policy address needs at both local and global levels through cost-effective and evidence-based interventions. A global epidemiological transition remains underway. Our findings suggest that prioritising non-communicable disease prevention and treatment policies, as well as strengthening health systems, continues to be crucially important. The progress on reducing the burden of CMNN diseases must not stall; although global trends are improving, the burden of CMNN diseases remains unacceptably high. Evidence-based interventions will help save the lives of young children and mothers and improve the overall health and economic conditions of societies across the world. Governments and multilateral organisations should prioritise pandemic preparedness planning alongside efforts to reduce the burden of diseases and injuries that will strain resources in the coming decades. Funding: Bill & Melinda Gates Foundation

    Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period. Methods: 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution. Findings: Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations. Interpretation: Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic. Funding: Bill & Melinda Gates Foundation

    Sales Promotion as a Tool for Improving Customer-Based Brand Equity in Kano Metropolis

    Get PDF
    Managing and building strong brand is seen today as the main goal of every organization. Having a strong brand is significant important to every organization as it result in having greater customers, achieving competitive advantage and brand extension. However, marketing researchers have not address how strong brand (brand equity) may be managed, built and improved through sales promotions. The study investigated sales promotion as a tool for improving customer-based brand equity by business organizations within Kano metropolis. The paper is conceptual. Therefore, it concludes that sales promotion as a promotional tool has a significant improvement on customer-based brand equity in Kano metropolis. Therefore, to have strength in terms of market leadership and market share, organizations must pay higher attention to their marketing activities such as sales promotion and this can be achieved by improving on the quality and awareness of the brand product and services. It is therefore, recommended that sales promotion should be strengthened and used by the organizations to create and manage strong brand as it have a positive impact on the attribute of brand knowledge which are believed to have an improvement on customer-based brand equity

    Self-Concept and Self-Efficacy as Determinants of Colleges of Education Students’ Performance in Shorthand in North-East, Nigeria

    Get PDF
    The study examined the self-concept and self-efficacy as determinants of Colleges of Education students’ performance in shorthand in North-East, Nigeria. The study had two specific objectives, two research questions which were meant to guide the study and two null hypotheses which were tested at 0.05 level of significant. The study adopted a descriptive survey research design which is purely quantitative, using structured questionnaires which were administered to 360 randomly selected Business Education Students of Colleges of Education in North-Eastern Nigeria. Data collected was analyzed using mean and standard deviations while a simple linear regression was used in testing the hypotheses. The findings of the study revealed among others that study strategy and attitude have significant and positive influence on Performance of Business Education Students in shorthand in Colleges of Education in North-East, Nigeria. Hence, the consistent failure of Business Education Students in Shorthand particularly in Colleges of Education in North-East, Nigeria can be reduced. The present study recommend that shorthand lecturers should encourage Business Education Students in Colleges of Education to develop a good study self-concept and positive self-efficacy towards shorthand as these will improve the students’ Performance in the course and minimize the massive and consistent failure recorded among Business Education Students in shorthand. Specifically, in Colleges of Education in North-Eastern Nigeria

    Fatty Acids and Amino Acids Profile of Some Varieties of Lagenaria siceraria Seed

    No full text
    Oil was extracted from the dehulled seeds of three Lagenaria siceraria varieties, derivatised and analysed for their fatty acids (FAs) composition using Gas Chromatography coupled with Mass Spectrometer (GC/MS). The defatted cake was analysed for amino acid composition using Technicon Multisample Amino Acid Analyser. The oil content of the seeds ranged between 46.5 and 48%. The major FAs in the oil were oleic (9.4 - 18.5%), stearic (7.7 – 8.9%), palmitic (13.6 – 15.3%) and linoleic acids (57.9 – 69.4%). The ratio of polyunsaturated fatty acids (PUFA) to saturated fatty acids (SAFAs), unsaturated fatty acids (USFAs) to SAFAs are 2:1 and 3:1, respectively, hence a good source of essential fatty acids (EFAs). Amino acid profile of the cake showed nine essential amino acids and eight non-essential amino acids with lysine being the limiting amino acids

    Geospatial Analysis of Accessibility to Healthcare Facilities in Bauchi Local Government Area, Bauchi State, Nigeria

    No full text
    In this study, a Geographic Information System (GIS) based network analysis was used to examine the accessibility to healthcare facilities in Bauchi Local Government Area of Bauchi State in northeastern Nigeria. Accessibility to the healthcare facilities in all the twenty two electoral wards in the area was established using OD (Origin Destination) matrix. The population weighted centroids of the electoral wards were used as origins and the healthcare facilities as destinations. Average nearest neighborhood analysis was carried out to determine the spatial pattern of distribution of the healthcare facilities. Findings of the study revealed that some wards like (Majidadi, Hardo and Makama-B) are poorly served with fewer healthcare facilities thanthe other wards like Kangere Galambi and Mun/Munsal. It was also found that the healthcare facilities in the area are highly insufficient in relation to the population in the area. In addition, accessibility to the healthcare facilities in wards like Tirwun, Daniya and K/Durum is a serious problem, because people in these areas have to travel very far distances to access the nearest available healthcare facilities. It is therefore recommended that the distribution of health facilities in the area should be based on the density of population of the electoral wards; and the location of a new health center should not be more than 4km from residential areas at a distance of not more than 20m from the major road

    Depolarization-induced automaticity in rat ventricular cardiomyocytes is based on the gating properties of L-type calcium and slow Kv channels

    No full text
    Depolarization-induced automaticity (DIA) of cardiomyocytes is the property of those cells to generate pacemaker cell-like spontaneous electrical activity when subjected to a depolarizing current. This property provides a candidate mechanism for generation of pathogenic ectopy in cardiac tissue. The purpose of this study was to determine the biophysical mechanism of DIA in terms of the ion conductance properties of the cardiomyocyte membrane. First, we determined, by use of the conventional whole-cell patch-clamp technique, the membrane conductance and DIA properties of ventricular cardiomyocytes isolated from adult rat heart. Second, we reproduced and analysed DIA properties by using an adapted version of the experimentally based mathematical cardiomyocyte model of Pandit et al. (Biophys J 81:3029-3051 2001, Biophys J 84:832-841 2003) and Padmala and Demir (J Cardiovasc Electrophysiol 14:990-995 2003). DIA in 23 rat cardiomyocytes was a damped membrane potential oscillation with a variable number of action potentials and/or waves, depending on the strength of the depolarizing current and the particular cell. The adapted model was used to reconstruct the DIA properties of a particular cardiomyocyte from its whole-cell voltage-clamp currents. The main currents involved in DIA were an L-type calcium current (I (CaL)) and a slowly activating and inactivating Kv current (I (ss)), with linear (I (B)) and inward rectifier (I (K1)) currents acting as background currents and I (Na) and I (t) as modulators. Essential for DIA is a sufficiently large window current of a slowly inactivating I (CaL) combined with a critically sized repolarizing current I (ss). Slow inactivation of I (ss) makes DIA transient. In conclusion, we established a membrane mechanism of DIA primarily based on I (CaL), I (ss) and inward rectifier properties; this may be helpful in understanding cardiac ectopy and its treatment.Cardiolog
    corecore