66 research outputs found

    A mouse model of autism implicates endosome pH in the regulation of presynaptic calcium entry.

    Get PDF
    Psychoactive compounds such as chloroquine and amphetamine act by dissipating the pH gradient across intracellular membranes, but the physiological mechanisms that normally regulate organelle pH remain poorly understood. Interestingly, recent human genetic studies have implicated the endosomal Na+/H+ exchanger NHE9 in both autism spectrum disorders (ASD) and attention deficit hyperactivity disorder (ADHD). Plasma membrane NHEs regulate cytosolic pH, but the role of intracellular isoforms has remained unclear. We now find that inactivation of NHE9 in mice reproduces behavioral features of ASD including impaired social interaction, repetitive behaviors, and altered sensory processing. Physiological characterization reveals hyperacidic endosomes, a cell-autonomous defect in glutamate receptor expression and impaired neurotransmitter release due to a defect in presynaptic Ca2+ entry. Acute inhibition of synaptic vesicle acidification rescues release but without affecting the primary defect due to loss of NHE9

    Algorithms, governance, and governmentality:on governing academic writing

    Get PDF
    Algorithms, or rather algorithmic actions, are seen as problematic because they are inscrutable, automatic, and subsumed in the flow of daily practices. Yet, they are also seen to be playing an important role in organizing opportunities, enacting certain categories, and doing what David Lyon calls ‘‘social sorting.’’ Thus, there is a general concern that this increasingly prevalent mode of ordering and organizing should be governed more explicitly. Some have argued for more transparency and openness, others have argued for more democratic or value-centered design of such actors. In this article, we argue that governing practices—of, and through algorithmic actors—are best understood in terms of what Foucault calls governmentality. Governmentality allows us to consider the performative nature of these governing practices. They allow us to show how practice becomes problematized, how calculative practices are enacted as technologies of governance, how such calculative practices produce domains of knowledge and expertise, and finally, how such domains of knowledge become internalized in order to enact self-governing subjects. In other words, it allows us to show the mutually constitutive nature of problems, domains of knowledge, and subjectivities enacted through governing practices. In order to demonstrate this, we present attempts to govern academic writing with a specific focus on the algorithmic action of Turnitin

    The developmental pattern of stimulus and response interference in a color-object Stroop task: an ERP study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Several studies have shown that Stroop interference is stronger in children than in adults. However, in a standard Stroop paradigm, stimulus interference and response interference are confounded. The purpose of the present study was to determine whether interference at the stimulus level and the response level are subject to distinct maturational patterns across childhood. Three groups of children (6–7 year-olds, 8–9 year-olds, and 10–12 year-olds) and a group of adults performed a manual Color-Object Stroop designed to disentangle stimulus interference and response interference. This was accomplished by comparing three trial types. In congruent (C) trials there was no interference. In stimulus incongruent (SI) trials there was only stimulus interference. In response incongruent (RI) trials there was stimulus interference and response interference. Stimulus interference and response interference were measured by a comparison of SI with C, and RI with SI trials, respectively. Event-related potentials (ERPs) were measured to study the temporal dynamics of these processes of interference.</p> <p>Results</p> <p>There was no behavioral evidence for stimulus interference in any of the groups, but in 6–7 year-old children ERPs in the SI condition in comparison with the C condition showed an occipital P1-reduction (80–140 ms) and a widely distributed amplitude enhancement of a negative component followed by an amplitude reduction of a positive component (400–560 ms). For response interference, all groups showed a comparable reaction time (RT) delay, but children made more errors than adults. ERPs in the RI condition in comparison with the SI condition showed an amplitude reduction of a positive component over lateral parietal (-occipital) sites in 10–12 year-olds and adults (300–540 ms), and a widely distributed amplitude enhancement of a positive component in all age groups (680–960 ms). The size of the enhancement correlated positively with the RT response interference effect.</p> <p>Conclusion</p> <p>Although processes of stimulus interference control as measured with the color-object Stroop task seem to reach mature levels relatively early in childhood (6–7 years), development of response interference control appears to continue into late adolescence as 10–12 year-olds were still more susceptible to errors of response interference than adults.</p

    Progressive skin fibrosis is associated with a decline in lung function and worse survival in patients with diffuse cutaneous systemic sclerosis in the European Scleroderma Trials and Research (EUSTAR) cohort.

    Get PDF
    Objectives To determine whether progressive skin fibrosis is associated with visceral organ progression and mortality during follow-up in patients with diffuse cutaneous systemic sclerosis (dcSSc). Methods We evaluated patients from the European Scleroderma Trials and Research database with dcSSc, baseline modified Rodnan skin score (mRSS) ≥7, valid mRSS at 12±3 months after baseline and ≥1 annual follow-up visit. Progressive skin fibrosis was defined as an increase in mRSS &gt;5 and ≥25% from baseline to 12±3 months. Outcomes were pulmonary, cardiovascular and renal progression, and all-cause death. Associations between skin progression and outcomes were evaluated by Kaplan-Meier survival analysis and multivariable Cox regression. Results Of 1021 included patients, 78 (7.6%) had progressive skin fibrosis (skin progressors). Median follow-up was 3.4 years. Survival analyses indicated that skin progressors had a significantly higher probability of FVC decline ≥10% (53.6% vs 34.4%; p&lt;0.001) and all-cause death (15.4% vs 7.3%; p=0.003) than non-progressors. These significant associations were also found in subgroup analyses of patients with either low baseline mRSS (≤22/51) or short disease duration (≤15 months). In multivariable analyses, skin progression within 1 year was independently associated with FVC decline ≥10% (HR 1.79, 95% CI 1.20 to 2.65) and all-cause death (HR 2.58, 95% CI 1.31 to 5.09). Conclusions Progressive skin fibrosis within 1 year is associated with decline in lung function and worse survival in dcSSc during follow-up. These results confirm mRSS as a surrogate marker in dcSSc, which will be helpful for cohort enrichment in future trials and risk stratification in clinical practice

    Racial differences in systemic sclerosis disease presentation: a European Scleroderma Trials and Research group study

    Get PDF
    Objectives. Racial factors play a significant role in SSc. We evaluated differences in SSc presentations between white patients (WP), Asian patients (AP) and black patients (BP) and analysed the effects of geographical locations.Methods. SSc characteristics of patients from the EUSTAR cohort were cross-sectionally compared across racial groups using survival and multiple logistic regression analyses.Results. The study included 9162 WP, 341 AP and 181 BP. AP developed the first non-RP feature faster than WP but slower than BP. AP were less frequently anti-centromere (ACA; odds ratio (OR) = 0.4, P &lt; 0.001) and more frequently anti-topoisomerase-I autoantibodies (ATA) positive (OR = 1.2, P = 0.068), while BP were less likely to be ACA and ATA positive than were WP [OR(ACA) = 0.3, P &lt; 0.001; OR(ATA) = 0.5, P = 0.020]. AP had less often (OR = 0.7, P = 0.06) and BP more often (OR = 2.7, P &lt; 0.001) diffuse skin involvement than had WP.AP and BP were more likely to have pulmonary hypertension [OR(AP) = 2.6, P &lt; 0.001; OR(BP) = 2.7, P = 0.03 vs WP] and a reduced forced vital capacity [OR(AP) = 2.5, P &lt; 0.001; OR(BP) = 2.4, P &lt; 0.004] than were WP. AP more often had an impaired diffusing capacity of the lung than had BP and WP [OR(AP vs BP) = 1.9, P = 0.038; OR(AP vs WP) = 2.4, P &lt; 0.001]. After RP onset, AP and BP had a higher hazard to die than had WP [hazard ratio (HR) (AP) = 1.6, P = 0.011; HR(BP) = 2.1, P &lt; 0.001].Conclusion. Compared with WP, and mostly independent of geographical location, AP have a faster and earlier disease onset with high prevalences of ATA, pulmonary hypertension and forced vital capacity impairment and higher mortality. BP had the fastest disease onset, a high prevalence of diffuse skin involvement and nominally the highest mortality

    Close to the machine: technophilia and its discontents

    No full text

    The Computational Study of Vision

    No full text
    The computational approach to the study of vision inquires directly into the sort of information processing needed to extract important information from the changing visual image---information such as the three-dimensional structure and movement of objects in the scene, or the color and texture of object surfaces. An important contribution that computational studies have made is to show how difficult vision is to perform, and how complex are the processes needed to perform visual tasks successfully. This article reviews some computational studies of vision, focusing on edge detection, binocular stereo, motion analysis, intermediate vision, and object recognition

    The Measurement of Visual Motion

    Get PDF
    The analysis of visual motion divides naturally into two stages: the first is the measurement of motion, for example, the assignment of direction and magnitude of velocity to elements in the image, on the basis of the changing intensity pattern; the second is the use of motion measurements, for example, to separate the scene into distinct objects, and infer their three-dimensional structure. In this paper, we present a computational study of the measurement of motion. Similar to other visual processes, the motion of elements is not determined uniquely by information in the changing image; additional constraint is required to compute a unique velocity field. Given this global ambiguity of motion, local measurements from the changing image, such as those provided by directionally-selective simple cells in primate visual cortex, cannot possibly specify a unique local velocity vector, and in fact, specify only one component of velocity. Computation of the full two-dimensional velocity field requires the integration of local motion measurements, either over an area, or along contours in the image. We will examine possible algorithms for computing motion, based on a range of additional constraints. Finally, we will present implications for the biological computation of motion
    corecore