93 research outputs found
Coherence lengths and anisotropy in MgB2 superconductor
Field and temperature microwave measurements have been carried out on MgB2
thin film grown on Al2O3 substrate. The analysis reveals the mean field
coherence length xi_{MF} in the mixed state and a temperature independent
anisotropy ratio gamma_{MF} = xi_{MF}^{ab} / xi_{MF}^c approximately 2. At the
superconducting transition, the scaling of the fluctuation conductivity yields
the Ginzburg-Landau coherence length with a different anisotropy ratio
gamma_{GL} = 2.8, also temperature independent.Comment: submitted to PR
Priprava taložnog kalcijeva karbonata šaržnim i semikontinuiranim postupkom
A comparison of the physical-chemical properties of precipitated calcium carbonate (PCC), prepared by batch and semicontinuous processes, is presented. In both processes, PCC, was synthesized by carbonation of slaked lime. In the batch process the experiments were performed by varying the initial mass concentration and temperature, and the semicontinuous process was conducted by varying the initial supersaturation and temperature. Calcite was the only calcium carbonate polymorph that appeared under the experimental conditions investigated. It was found, that in the batch experiments the specific surface area and the average size of calcite particles decreased with the increase of temperature. At the same time, the increase of the initial mass concentration of slaked lime enhanced the degree of precipitate aggregation. PCC prepared by the semicontinuous process, conducted at low temperatures and high supersaturations, was of high specific surface area. By careful tuning of the semicontinuous process parameters, calcite in the form of rhombohedral, scalenohedral or nanosized spherical particles can be producedU ovom su radu uspoređena fizičko-kemijska svojstva taložnog kalcijeva karbonata (TKK) pripravljenog karbonatizacijom vapnenog mlijeka u šaržnom i semikontinuiranom reaktoru. U šaržnom su postupku varirane temperatura i početna masena koncentracija vapnenog mlijeka, dok su u semikontinuiranom mijenjani temperatura i prezasićenost sustava. Pri svim je istraživanim uvjetima nastao kalcit. Utvrđeno je da se specifična površina i prosječni promjer čestica kalcita, pripravljenog šaržnim postupkom, smanjuju s povećanjem temperature, dok se s povišenjem početne masene koncentracije poboljšava stupanj agregiranosti taloga. TKK pripravljen semikontinuiranim postupkom, vođenim pri niskim temperaturama ili visokim prezasićenostima, velike je specifične površine. Odabirom procesnih parametara semikontinuiranog postupka moguće je pripraviti kalcit u obliku romboedarskih, skalenoedarskih ili kuglastih čestica nanometarskih dimenzija
Influence of Structural Disorder on the Magnetic Order in FeRhCr Alloys
Magnetic phase transitions in alloys are highly influenced by the sample preparation techniques. In the present research, electronic and magnetic properties of Fe48Cr3Rh49 alloys with varying cooling rates were studied, both experimentally and theoretically. The degree of crystalline ordering was found to depend on the cooling rate employed after annealing the alloy. Modeling of alloy structures with different degrees of crystalline ordering was carried out via strategic selection of substitution positions and distances between chromium atoms. Theoretical calculations revealed significant changes in magnetic and electronic properties of the alloy with different substitutions. A comprehensive analysis of the calculated and experimental data established correlations between structural characteristics and parameters governing the magnetic phase transition. In this study, we also developed a method for evaluating the magnetic properties of the alloys obtained under different heat treatments. The proposed approach integrates atom substitution and heat treatment parameters, offering precise control over alloy manufacturing to effectively tune their essential magnetic properties
Separation and purification of curcumin using novel aqueous two-phase micellar systems composed of amphiphilic copolymer and cholinium ionic liquids
Novel aqueous two-phase micellar systems (ATPMS) composed of Pluronic F68, a triblock amphiphilic copolymer, and cholinium-based ionic liquids (ILs) were formulated and applied for separation/purification of curcumin (CCM). CCM stability in the presence of ATPMS components was also evaluated. CCM is stable up to 24 h in copolymer (1.0 10.0 wt%) and ILs (0.1 3.0 M) aqueous solutions. Very mild phase separation conditions (close to room temperature) were achieved by adding cholinium ILs to the Pluronic F68 + McIlvaine buffer at pH 6.0 solution. The decrease of cloud-point temperature is dependent on the relative hydrophobicity of IL anion, [Hex] > [But] > [Prop] > [Ac] > Cl. ATPMS composed of more hydrophobic ILs ([Ch][Hex] > [Ch][But] > [Ch][Prop]) are most efficient in the partition of commercial CCM into polymeric micelles-rich phase. The best ATPMS (0.70 M [Ch][But] and 0.60 M [Ch][Hex]-based ATPMS) were then used to purify CCM from a crude extract of Curcuma longa L. Both systems were very selective to separate CCM from protein-based contaminants (selectivity values 25; purification yields 12-fold). Pluronic F68-based ATPMS are promising for selective separation of hydrophobic biomolecules by using cholinium-based ILs as adjuvants to adjust phase separation temperatures and biomolecules partition.This study was funded by the Coordination for Higher Level Graduate Improvements (CAPES/Brazil, finance code 001), National Council for Scientific and Technological Development (CNPq/Brazil) and the State of São Paulo Research Foundation (FAPESP/Brazil, processes #2014/16424-7, #2017/10789-1, #2018/10799-0, #2018/05111-9; #2019/05624-9, and #2019/08549-8). A.M. Lopes and J.F.B. Pereira are grateful for the language revision of native speaker H.S. Pacheco Neto.info:eu-repo/semantics/publishedVersio
Calorimetric study of geopolymer binders based on natural pozzolan
This paper investigates the kinetics of geopolymerisation in an inorganic polymeric binder based on a natural pozzolan. The heat released by the exothermic geopolymerisation reaction process is monitored under isothermal temperature conditions, maintained in a differential scanning calorimeter using a water circulation cell. Calorimetric data are obtained isothermally at 65, 75, and 85 °C with various Na2O/Al2O3 and SiO2/Na2O molar ratios and in the presence and absence of small amounts of calcium aluminate cement (used as an efflorescence control admixture in these binder systems). The first stage of reaction, which is rapid and strongly exothermic, is shortened as the temperature increases. The total heat of reaction increases in the mixes containing calcium aluminate cement, but the apparent activation energy calculated using a pseudo-first-order reaction model is lower than without added calcium aluminate cement. At a constant overall SiO2/Na2O molar ratio, the apparent activation energy is decreased as the Na2O/Al2O3 molar ratio increases. Calcium aluminate cement, therefore, reduces the minimum energy required to initiate geopolymerisation reactions of this natural pozzolan and facilitates the progress of the reactions which lead to formation of a cementitious product
Aluminum-rich belite sulfoaluminate cements: clinkering and early age hydration
Belite sulfoaluminate (BSA) cements have been proposed as environmentally friendly building
materials, as their production may release up to 35% less CO2 into the atmosphere when compared
to ordinary Portland cements. Here, we discuss the laboratory production of three aluminum-rich
BSA clinkers with nominal mineralogical compositions in the range C2S (50-60%), C4A3, i.e. a value as close as possible to the nominal composition. Under these experimental conditions, three different BSA clinkers, nominally with 20, 30 and 30 wt% of C4A3 respectively, as determined by Rietveld analysis. We also studied the complex hydration process of BSA cements prepared by mixing BSA clinkers and gypsum. We present a methodology to establish the phase assemblage evolution of BSA cement pastes with time, including amorphous phases and free water. The methodology is based on Rietveld quantitative phase analysis of synchrotron and laboratory X-ray powder diffraction data coupled with chemical constraints. A parallel calorimetric study is also reported. It is shown that the b-C2S phase is more reactive in aluminum-rich BSA cements than in standard belite cements. On the other hand, C4A3$ reacts faster than the belite phases. The gypsum ratio in the cement is also shown to be an important factor in the phase evolution
- …